Tell Me Something Interesting About Dunnocks

Never forget that animals familiar to you – the sort you see and hear every day, or every other day – may be exotic and exciting creatures to various of your fellow humans. And it’s for this reason that I’ve sometimes chosen to write about familiar, commonplace species I see every day, since I know that other people won’t be familiar with the animals concerned, nor even (in cases) be aware of their existence. Today I want to discuss a passerine bird I’ve long planned to write about: a cryptic, mostly brown species known generally and most commonly as the Dunnock Prunella modularis but increasingly as the Hedge accentor.

I’ve never found Dunnocks especially easy to photograph… but, then, I could say that about most of the birds I’ve tried to photograph. This one is living up to one of its vernacular names and standing on top of a (recently trimmed) hedge. Image: Darren Naish.

I’ve never found Dunnocks especially easy to photograph… but, then, I could say that about most of the birds I’ve tried to photograph. This one is living up to one of its vernacular names and standing on top of a (recently trimmed) hedge. Image: Darren Naish.

Actually, the ‘old’ name for this species here in the UK is ‘Hedge sparrow’. This name has mostly had its day. It’s naïve and quaint as well as wrong – we’ve mostly given up on the idea that ‘sparrow’ means ‘generic small brown bird’ – and it’s dying out because you look far smarter and more knowledgeable about birds if you know what an accentor is. Accentors are unique to northern Africa and Eurasia (excepting their introduction to New Zealand); all extant 13 species are included within the genus Prunella, though an argument has sometimes been made that Laiscopus should be recognised too (for the large, mountain-dwelling Alpine accentor P. collaris and Altai accentor P. himalayana). They’re mostly birds of mountainous places and temperate woodland, the Dunnock also occurring in suburban gardens and parks. Where do accentors belong within the passerine radiation? They’re part of Passeroidea and – ironically – very close to sparrows proper, but are outside the big passeroid clade that includes finches and New World nine-primaried oscines, termed Emberizoidea (Selvatti et al. 2015). Yes, they have a fossil record, but it only extends back to the Pliocene…. so far.

Substantially simplified cladogram of passeroid passerines, showing some of the main lineages. Accentors are close to true sparrows, wagtails and pipits and kin but are part of a paraphyletic assemblage of mostly thin-billed lineages (based on the phylogeny of Selvatti  et al . (2015)). This cladogram uses images produced for my STILL in-prep textbook on the vertebrate fossil record,   on which go here  . Image: Darren Naish.

Substantially simplified cladogram of passeroid passerines, showing some of the main lineages. Accentors are close to true sparrows, wagtails and pipits and kin but are part of a paraphyletic assemblage of mostly thin-billed lineages (based on the phylogeny of Selvatti et al. (2015)). This cladogram uses images produced for my STILL in-prep textbook on the vertebrate fossil record, on which go here. Image: Darren Naish.

Dunnocks are mostly insectivorous but also eat worms and seeds, and mostly forage at ground level among leaf litter. Like so many birds that occur in western Europe, the Dunnock also occurs in part of northern Africa and in such parts of western Asia as the Caucasus and Iran. Some populations – those of the UK and elsewhere in western Europe, among others – are essentially sedentary while those of Scandinavia and western Russia migrate to the Mediterranean fringes and Asia Minor during the winter. Several subspecies have been named. These differ mostly in how dark they are, the form of Ireland, western Scotland and the adjacent islands (P. m. hebridium) being darkest, that of England and eastern Scotland (P. m. occidentalis) being palest.

Dunnocks are often seen in undergrowth, and thus in poor light. This photo (from 2006) shows one of the birds that used to live in my garden. Image: Darren Naish.

Dunnocks are often seen in undergrowth, and thus in poor light. This photo (from 2006) shows one of the birds that used to live in my garden. Image: Darren Naish.

Flexible sexual systems. These days one of the things that most people interested in birds know about the Dunnock is that it’s notoriously flexible in breeding strategy. Some populations are monogamous (one male defends a territory inhabited by a single female), others are polygynous (where one male territory overlaps that of a few females, all of which mate with him and are defended by him from other males), and yet others are polygynandrous (where two males work together to defend the same territory, that territory containing several females, all of whom mate with the two males).

Females are often polyandrous and mate with the several males who share the same territory (these males have a dominance hierarchy of their own, but since they all mate with the same female even the ‘top’ male doesn’t necessarily father the greatest number of offspring). Seemingly because males know (or suspect) that the female in question has been mating with other males, females engage in a striking precopulatory display where she droops her wings, raises and vibrates her tail, and exposes her cloaca… which the male pecks, causing her to eject the contents (Davies 1983). The male will then guard the female to (in theory) ensure that she doesn’t mate with another male again.

I’ve seen a Dunnock do something that looked like soliciting on one occasion and have a bunch of poor photos of it, here are two of them. Image: Darren Naish.

I’ve seen a Dunnock do something that looked like soliciting on one occasion and have a bunch of poor photos of it, here are two of them. Image: Darren Naish.

Despite the familiarity of the Dunnock as a European garden bird, this weird and memorable behaviour wasn’t documented until 1933 in the book Evolution of Habit in Birds (this reporting an observation actually made in 1902), and even then by someone considered an outsider to technical ornithological research, namely Edmund Selous (Birkhead et al. 2014). The realisation that the precopulatory display and cloacal pecking was linked to sperm competition (Davies 1983), that extra-pair copulations were commonplace in ‘monogamous’ species, and that scientists might be able to test parentage of the resulting chicks via DNA analysis (Burke et al. 1989) didn’t arrive until the 1980s, and the Dunnock studies concerned occurred at about the same time as similar studies were documenting post-copulatory sexual selection and extra-pair copulations in birds and other animals.

David Quinn’s excellent illustration, showing the female’s precopulatory display. Image: (c) David Quinn. This drawing has appeared in   Davies (1992)   and   Birkhead  et al . (2014)  .

David Quinn’s excellent illustration, showing the female’s precopulatory display. Image: (c) David Quinn. This drawing has appeared in Davies (1992) and Birkhead et al. (2014).

Some of you might remember seeing cloacal pecking in Dunnock featuring on TV for the first time in the 1998 BBC series The Life of Birds.

Female-female competition. In polygynous Dunnock populations, females compete for male attention and vie for territory with other females, at least some (and not the majority) of these competing females using complex songs to help attract ‘their’ male when he’s spending time with other females (Langmore & Davies 1997). They might sing as many as 60 times over the space of two days, and bouts of intense female-female competition can cause the male to move “to and fro in response to their trills, sometimes as often as every 10 or 20 seconds” (Langmore & Davies 1997, p. 887). In male passerines, elevated testosterone levels are linked to an increase in singing more. Could the same thing operate in females? Langmore et al. (2002) found that aggression among competing polygynous and polygynandrous females caused a rise in their testosterone levels, with this rise being linked to female calling and singing.

Use of complex, competitive singing by females is not unique to the Dunnock but was first documented in another accentor, the habitually polygynandrous Alpine accentor (Langmore et al. 1996). It’s increasingly well known that female-female competition is present and even important in animals (it’s key to the work I and colleagues have published on mutual sexual selection), but the case studies where it’s well documented aren’t all that familiar among biologists at large. Accentors, it turns out, are among the best of case studies.

The face a of a Dunnock. There are some similarities here with wagtails and pipits, and with sparrows and finches and their kin. Image: Darren Naish.

The face a of a Dunnock. There are some similarities here with wagtails and pipits, and with sparrows and finches and their kin. Image: Darren Naish.

Having mentioned variation in female vocalisations, it’s worth noting that male Dunnocks are variable too, their singing changing (‘switching’, to use ornithological parlance) to an increased rate when they’re searching for fertile females. Rapid song switching appears to be liked by females, who are more likely to solicit matings when they hear a male produce multiple song types (Langmore 1997).

Dunnocks encountered in the UK. The most striking plumage feature of this bird - the prominent streaking on its mantle and flanks - is not obvious in all views. Image: Darren Naish.

Dunnocks encountered in the UK. The most striking plumage feature of this bird - the prominent streaking on its mantle and flanks - is not obvious in all views. Image: Darren Naish.

So many copulations. Perhaps unsurprisingly in view of all this, Dunnocks are sexually active little animals with a high reproductive output, by which I mean that they can mate over 100 times in a day, each copulation taking less than a second. A thousand copulation events might have occurred over the span of time in which a single egg clutch was produced, the high number of solicitations by females seemingly being more to do with securing male interest in provisioning the clutch than in winning successful fertilisation (Davies et al. 1996). In polygynandrous populations, it therefore makes sense – as a male – to turn down at least some female solicitations,  and to help less at the nest than males do in monogamous and other populations.

The possibilities open to these birds are diverse, and all have different knock-on effects as goes which sex has the ‘upper hand’ and what these strategies could mean in evolutionary terms. I haven’t covered half of the complexity here anyway – you could literally write a whole book on this stuff, and in fact Nick Davies did exactly this, back in 1992 (Davies 1992).

Nick Davies’s 1992 book   is the classic work on these birds. Hey, there’s that illustration by David Quinn again.

Nick Davies’s 1992 book is the classic work on these birds. Hey, there’s that illustration by David Quinn again.

That’s where we’ll end for now. This is yet another of those TetZoo articles that’s been planned and in a partially written state for years. Big thanks to Matt Wedel for helping to collect the relevant literature – something he did back in 2006! Yes, a lot of slow-burn stuff here at TetZoo.

If you enjoyed this article and would like to see me do more, please consider supporting this blog (for as little as $1 per month) at patreon. The more support I receive, the more financially viable this project becomes and the more time and effort I can spend on it. Thank you :)

 For previous TetZoo articles on passerines, see…

Refs - -

Birkhead, T., Wimpenny, J. & Montgomerie, B. 2014. Ten Thousand Birds: Ornithology Since Darwin. Princeton University Press, Princeton.

Burke, T., Davies, N. B., Bruford, M. W. & Hatchwell, B. J. 1989. Parental care and mating behaviour of polyandrous dunnocks Prunella modularis related to paternity by DNA fingerprinting. Nature 338, 249-251.

Davies, N. B. 1983. Polyandry, cloaca-pecking and sperm competition in dunnocks. Nature 302, 334-336.

Davies, N. B. 1992. Dunnock Behaviour and Social Evolution. Oxford University Press, Oxford.

Davies, N. B., Hatchwell, B. J. & Langmore, N. E. 1996. Female control of copulations to maximize male help: a comparison of polygynandrous alpine accentors, Prunella collaris, and dunnocks, P. modularis. Animal Behaviour 51, 27-47.

Langmore, N. E. 1997. Song switching in monandrous and polyandrous dunnocks, Prunella modularis. Animal Behaviour 53, 757-766.

Langmore, N. E., Cockrem, J. F. & Candy, E. J. 2002. Competition for male reproductive investment elevates testosterone levels in female dunnocks, Prunella modularis. Proceedings of the Royal Society, London Series B 269, 2473-2478.

Langmore, N. E. & Davies, N. B. 1997. Female dunnocks use vocalizations to compete for males. Animal Behaviour 53, 881-890.

Langmore, N. E., Davies, N. B., Hatchwell, B. J. & Hartley, I. R. 1996. Female song attracts males in the alpine accentor Prunella collaris. Proceedings of the Royal Society, London Series B, 263, 141-146.

Selvatti, A. P., Gonzaga, L. P. & Russo, C. A. de M. 2015. A Paleogene origin for crown passerines and the diversification of the Oscines in the New World. Molecular Phylogenetics and Evolution 88, 1-15.

The World’s Best Books on Woodpeckers

I really like woodpeckers. This large, widespread group of around 240 living species includes the wrynecks, piculets and true or typical woodpeckers and includes species ranging from 7 to 60 cm in length. Woodpeckers are famous for their wood-excavating specialisations and ability to cling and climb on vertical substrates, but they’re diverse and not all species have these features. Here, I’ll resist the urge to talk about the birds that much and will instead provide brief comments on some of the best books written on these charismatic and fascinating animals.

This is one of the two woodpecker species I see on a regular basis: Green woodpecker  Picus viridis  (this photo from March 2016). All my photos are bad. Image: Darren Naish.

This is one of the two woodpecker species I see on a regular basis: Green woodpecker Picus viridis (this photo from March 2016). All my photos are bad. Image: Darren Naish.

Winkler et al.’s Woodpeckers: A Guide to the Woodpeckers, Piculets and Wrynecks of the World. Winkler et al. (1995) is the woodpecker instalment in the famous Pica Press book series: these books feature an introductory section on the anatomy and systematics of the group concerned, a colour plate section (in this case, with art by David Nurney), and a species-by-species text section. The book is definitive and I’ve used it a lot. The text summarises knowledge on range, identification, habits, foot, breeding and more, and references are provided.

woodpecker-books-June-2019-Winkler-cover-1000px-tiny-June-2019-Darren-Naish-Tetrapod-Zoology.jpg

Like most people seriously interested in birds, I’ve amassed a decent collection of the Helm/Pica Press books in the same series, but I’m some way from owning all of them. Insert typical complaint about recently published bird books being prohibitively expensive.

The Helm/Pica Press bird books (oops, plus a few others) in the Tet Zoo Towers library. Image: Darren Naish.

The Helm/Pica Press bird books (oops, plus a few others) in the Tet Zoo Towers library. Image: Darren Naish.

woodpecker-books-June-2019-Skutch-1000px-tiny-June-2019-Darren-Naish-Tetrapod-Zoology.jpg

Alexander Skutch’s Life of the Woodpecker. Skutch (1985) is a large (near ‘oversize’) hardback book, beautifully illustrated in colour throughout by the very good paintings of Dana Gardner. The book is separated into sections that cover the various aspects of woodpecker behaviour and ecology; there’s also a brief introduction to woodpeckers as a whole and a taxonomic list of recognised species at the back. Overall, the book is a good introduction to our knowledge of woodpeckers and everything about them, but it’s the artwork that makes it really worth getting.

Left: Fiery-billed aracari ( Pteroglossus frantzii ) vs Pale-billed woodpecker ( Campephilus guatemalensis ). Right: Imperial  Campephilus imperialis . Just two of the many excellent illustrations by Dana Gardner included in   Skutch (1985)  . Image: Dana Gardner/  Skutch (1985)  .

Left: Fiery-billed aracari (Pteroglossus frantzii) vs Pale-billed woodpecker (Campephilus guatemalensis). Right: Imperial Campephilus imperialis. Just two of the many excellent illustrations by Dana Gardner included in Skutch (1985). Image: Dana Gardner/Skutch (1985).

Gerard Gorman’s Woodpeckers of the World. I absolutely love field guides, often for the art more for the utility, and in part because I love the convention of showing closely related species arranged together on the same plate. But despite those things, we still often need to see photographs of the animals we’re interested in. Gorman (2014) is a photographic guide to the world’s living woodpecker species, each being illustrated by at least a few photos (though read on). The text is good too: each species has a short section covering identification, range, variation and so on. The photos are excellent. It’s a must-have if you’re seriously interested in these birds.

woodpecker-books-June-2019-Gorman-1000px-tiny-June-2019-Darren-Naish-Tetrapod-Zoology.jpg

Are all species illustrated by photos? What about the Ivory-billed woodpecker in the room… by which I mean: what about photos of the Ivory-billed Campephilus principalis and Imperial C. imperialis? No photos, only text.

Tim Gallagher’s Imperial Dreams. I reviewed this book at TetZoo back when it was new in 2013 (but good luck finding the article now; it’s been ruined by its hosters, like all stuff at ver 2 and ver 3). I’m not that great a fan of travelogue-type books on natural history, but I do really like Imperial Dreams. One of the world’s most spectacular woodpeckers is – or, was – the Imperial woodpecker of the Sierra Madre Occidental, a pine forest giant that seems to have dwindled to extinction somewhere between the late 1950s and … 1980s? 90s? No-one knows exactly when this bird went extinct, and its persistence was rumoured as recently as the 1990s.

woodpecker-books-June-2019-Gallagher-1000px-tiny-June-2019-Darren-Naish-Tetrapod-Zoology.jpg

Gallagher (2013) charts an effort to search for continuing traces for this species. A lot of information on the bird itself is included, but the human story relevant to the region is fascinating too. If you like woodpeckers, the book is well worth getting hold of. I should finish by adding that Gallagher also wrote The Grail Bird: Hot on the Trail of the Ivory-Billed Woodpecker, a volume I haven’t yet read.

Books on woodpeckers. There are others… Image: Darren Naish.

Books on woodpeckers. There are others… Image: Darren Naish.

Birdwatching in Suburban China

Early this year I spent time in China, specifically in Zigong, Sichuan Province. I was there for day-job reasons (acting as consultant for life-sized dinosaur models), but when not working I went and looked at giant pandas, and at the many amazing skeletons of Jurassic dinosaurs (and other fossil vertebrates) at Zigong Dinosaur Museum. I also did a fair bit of birdwatching, both in the various gardens and green spaces I could get to it but also in the urban and suburban places within easy distance of my accommodation. And I saw a bunch of stuff, which is what I want to talk about here.

Come on - everybody loves White-browed laughingthrushes  Pterorhinus sannio ! More on this species below. Image: Darren Naish.

Come on - everybody loves White-browed laughingthrushes Pterorhinus sannio! More on this species below. Image: Darren Naish.

First things first. To identify the birds of a given region, you need a goddam field guide. Thinking it would be easy and simple to get a ‘Field Guide to the Birds of China’ before setting off, I went to buy one (I recall looking in Foyles in London’s Charig Cross Road, since it has an excellent field guide section) buuut…. nope. Nothing. After looking around online a bit I discovered John MacKinnon* and Karen Phillipps’s 2000 A Field Guide to the Birds of China. Which is great apart from the fact that it costs over £40, and usually over £50, which is above what I consider affordable for books. Goddammit. On this occasion, however, my luck was in since a special sale at NHBS meant that I was able to get it at half price (albeit not until long after my trip had happened).

* Yes, of Saola fame and so, so much else.

MacKinnon & Phillipps (2000),  A Field Guide to the Birds of China .   It’s not the most attractive field guide out there, but it does seem to be the best one. Image: Darren Naish.

MacKinnon & Phillipps (2000), A Field Guide to the Birds of China. It’s not the most attractive field guide out there, but it does seem to be the best one. Image: Darren Naish.

Regular TetZoo readers might have heard me complain about book prices before. Books are horrendously over-priced, a thing I can’t help but feel angry about given that – as someone who’s spent most of their life in relative poverty – it bothers me a lot that knowledge is so frequently locked away unless you’re lucky enough to be able to afford access to it. Anyway, I digress.

Feral pigeons and Whooper swans in China. Discussed below. Images: Darren Naish.

Feral pigeons and Whooper swans in China. Discussed below. Images: Darren Naish.

I should say that this was my first ever trip to China, and that I’d been told (no offence intended to Chinese friends and colleagues) to expect to see nothing in the way of wild animal life in view of relevant environmental issues. While I certainly saw places where pollution was bad and natural spaces were being destroyed or degraded, the good news is that I still saw a fair amount of wildlife – though, birds only. I should also add that the avifauna was – to my western European eyes – an interesting mix of the familiar and commonplace with the obscure and exotic. Aaaaand I should also add that my photos are mostly terrible. The skies were leaden grey and the lighting terrible during my entire time in China, plus birds are fast and my camera is not that great. So, apologies.

Rallids and grebes of China. At top left: Common coot  Fulica atra . At top right: Common moorhen  Gallinula chloropus . Below: Little grebe  Tachybaptus ruficollis . Image: Darren Naish.

Rallids and grebes of China. At top left: Common coot Fulica atra. At top right: Common moorhen Gallinula chloropus. Below: Little grebe Tachybaptus ruficollis. Image: Darren Naish.

Anyway, to business. What did I see? We’ll start with the larger birds. While at the ornamental lake at Chengdu Panda Base (or, more formally: Chengdu Research Base of Giant Panda Breeding), I saw Whooper swan Cygnus cygnus, Ruddy shelduck Tadorna ferruginea, Common coot Fulica atra, Common moorhen Gallinula chloropus and Little grebe Tachybaptus ruficollis. Coots, moorhens and Little grebes are birds I see regularly here in the UK, but more interesting were the several small raptors circling nearby. I’m not totally sure what they were and my photos are poor, but the small-headed look, extensive barring, dark primaries and lack of transverse bars on the tail make me think that this is either a Buteo or Butastur hawk or a baza. There are several accipiters in Sichuan but I don’t think that’s what we’re seeing here. Thoughts?

Small, broad-winged raptor… of some sort. Image: Darren Naish.

Small, broad-winged raptor… of some sort. Image: Darren Naish.

Feral pigeons Columba livia were a thing, which isn’t a surprise but is still something you might need confirming. Then there’s this pigeon…

What is this pigeon… or dove, if you want? Read on. Both photos show the same individual, photographed at Chengdu Panda Base. Image: Darren Naish.

What is this pigeon… or dove, if you want? Read on. Both photos show the same individual, photographed at Chengdu Panda Base. Image: Darren Naish.

It’s a mid-sized, long-tailed, mostly brown, grey-headed, red-legged pigeon that I saw walking on the ground a fair bit. Spots and barring look absent. But... I’m pretty sure that this a Spotted dove Streptopelia chinensis, though I had trouble realising this since the diagnostic spotted patch on the neck isn’t visible in my photos. Or am I wrong?

Shrikes. Now we come to passerines, of which I saw a bunch. I’ll go through them in a very rough sort of phylogenetic order, rather than in the order in which I encountered them. I saw shrikes in several places, often in towns and right next to tower blocks and in very urban settings (so long as there are trees and green spaces, there can be birds). All appeared to belong to the same species, one with a warm brown mantle, grey crown and nape, black wing feathers but for a small, white, rectangular panel on the primaries, and long tail that was dark on its upper surface. Of the 12 shrike species in the region, this description applies only to the Burmese shrike Lanius colluroides, the black (rather than streaked white) forehead further showing that I only ever saw males… which figures, because they were usually singing.

Burmese shrike  Lanius colluroides , two different individuals (the one at left is singing). This species occurs throughout south-east Asia as well as China and is mostly associated with lowland forests. Image: Darren Naish.

Burmese shrike Lanius colluroides, two different individuals (the one at left is singing). This species occurs throughout south-east Asia as well as China and is mostly associated with lowland forests. Image: Darren Naish.

My impression in the field was that I was looking at Red-backed shrike L. collurio – a species I know well from fieldwork in Romania – but the Red-backed (which does occur in China) is quite different, mostly in being shorter-tailed. Furthermore, the Red-backed shrikes in China are restricted to the far north of the country and belong to the pale subspecies L. c. pallidifrons, the mantle of which is washed out relative to the reddy-brown present on Burmese shrikes and Red-backed shrikes in Europe. Shrikes are corvoids, by the way, and thus outside the clade – Passerida – that contains all the other passerines I’ll be talking about.

Sylvioids 1: bulbuls and laughingthrushes. Bulbuls, babblers, laughingthrushes and allied pointy-billed sylvioid passerines are not that typical of western Europe, so it was fairly thrilling for me that my first passerine of the entire trip was the Light-vented bulbul Pycnonotus sinensis, which I saw a lot and often right in the middle of urban areas (again, so long as there were trees).

Light-vented bulbul  Pycnonotus sinensis . Different individuals seen, variously, in an ornamental garden and in a planted region in the middle of a heavily pedestrianised area. Images: Darren Naish.

Light-vented bulbul Pycnonotus sinensis. Different individuals seen, variously, in an ornamental garden and in a planted region in the middle of a heavily pedestrianised area. Images: Darren Naish.

I also saw White-browed laughingthrushes Pterorhinus sannio at many places, including parks and gardens. I was often able to get really close to them. They forage on the ground a lot, often in pairs or small groups, and also hang around in low vegetation. I was also happy to see Red-billed leiothrix Leiothrix lutea in the wild, a small laughingthrush well known outside of Asia as a cage bird. Leiothrixes are among those many passerines where the vernacular name is the same as the scientific one. Other examples include tesias, liocichlas, eremomelas, prinias, cisticolas, hyliotas, batises, tschagras and so on and on.

At left: White-browed laughingthrush  Pterorhinus sannio  singing. At right: Red-billed leiothrix  Leiothrix lutea . Images: Darren Naish.

At left: White-browed laughingthrush Pterorhinus sannio singing. At right: Red-billed leiothrix Leiothrix lutea. Images: Darren Naish.

Sylvioids 2: leaf warblers and bush warblers. Below, we see a leaf warbler (or phylloscopid). There are about a million leaf warbler species in China and they’re notoriously difficult to identify with confidence, certainly so when you’re looking at poor photos and not with the birds in front of you. I initially reckoned that this might be a Yellow-browed warbler Phylloscopus inornatus on account of the two whitish wing bars. However, the bird I saw has a distinct central crown stripe, which is supposed to count that species out. A better match might be Pallas’s leaf warbler P. proregulus (a phylloscopid I always remember from field guides because it’s sometimes positioned close to kinglets, and both this and its specific name imply that it’s a ‘proto-kinglet’, which it totally isn’t). This is in keeping with the small bill and whiteish underside, plus P. proregulus is common across much of China and nearby (MacKinnon & Phillipps 2000).

Definitely a phylloscopid… and perhaps a Pallas’s leaf warbler  Phylloscopus proregulus . Both images show the same individual. Images: Darren Naish.

Definitely a phylloscopid… and perhaps a Pallas’s leaf warbler Phylloscopus proregulus. Both images show the same individual. Images: Darren Naish.

Phylloscopus leaf warblers are familiar birds to me (there are a few TetZoo ver 2 and 3 articles about them, or there used to be…), but I’d never before seen any member of the cettiid warbler genus Abroscopus. This (below) is the Rufous-faced warbler A. albogularis, a fairly common bush warbler of woods and thickets with a set of distinctive facial markings. My impression on seeing this bird in the field was that it was a fulvetta but I became confused when the markings totally didn’t match any known fulvetta species. Please excuse the terrible photo.

Blurry Rufous-faced warbler  A. albogularis , photographed in the gardens of the Zigong Dinosaur Museum. Image: Darren Naish.

Blurry Rufous-faced warbler A. albogularis, photographed in the gardens of the Zigong Dinosaur Museum. Image: Darren Naish.

Bushtits and actual tits. The same applies to my photos of Black-throated tit Aegithalos concinnus, an aegithalid (bushtit or long-tailed tit) I saw several times while individuals, often in mixed flocks with warblers, foraged in vertical and hanging poses. A few very similar aegithalids also occur in China – like the Rufous-fronted tit A. iouschistos and Black-browed tit A. bonvaloti – but the Black-throated has unmistakeable markings. Aegithalids are not really tits at all, by the way, but are instead close kin of phylloscopid and sylviid warblers (Jønsson & Fjeldså 2006, Selvatti et al. 2015) and thus deep within Sylvioidea. True tits (Paridae) appear to be an early-diverging lineage within Sylvioidea.

Black-throated tit  Aegithalos concinnus , showing the head, throat, chest and belly markings diagnostic for this species. Images: Darren Naish.

Black-throated tit Aegithalos concinnus, showing the head, throat, chest and belly markings diagnostic for this species. Images: Darren Naish.

This photo wasn’t taken in China, but in England, and shows an aegithalid species very familiar to European people like myself: the Long-tailed tit  A. caudatus , which also occurs in China. Its long tail is not typical of all members of this group. Image: Darren Naish.

This photo wasn’t taken in China, but in England, and shows an aegithalid species very familiar to European people like myself: the Long-tailed tit A. caudatus, which also occurs in China. Its long tail is not typical of all members of this group. Image: Darren Naish.

Of proper tits, I had good views of what I assumed were Great tit Parus major, a species which does occur across much of southern China. However, the Great tits in China have a white border to the black belly stripe and a single white wing bar, whereas the tit I saw (and photographed, really badly) had a yellow border to its belly stripe and two white wing bars. This means it must have been the Green-backed tit P. monticolus, and perhaps the subspecies P. m. yunnanensis (the more eastern form P. m. legendrei has a much wider black belly stripe, and the other subspecies occur further west or in Taiwan). Harrap & Quinn (1996) made the point that the relationship between Green-backed and Great tits is not well understood, since both have overlapping ecological preferences in some parts of their ranges and can even occur in the same feeding flocks. The Green-backed tit also occurs in places where there are distinct lowland and highland Great tit subspecies on either side, which is confusing. In general, the Green-backed tit seem to be a highland relative of the Great tit, more closely associated with wetter forests.

Really bad photos of a tit which turned out to be a Green-backed tit  Parus monticolus.  Lighting conditions were often against me when I was getting these photos. Image: Darren Naish.

Really bad photos of a tit which turned out to be a Green-backed tit Parus monticolus. Lighting conditions were often against me when I was getting these photos. Image: Darren Naish.

Pipits and wagtails, and sparrows. This (below) is an Olive-backed pipit Anthus hodgsoni, one of several of these birds that I watched foraging in rough ground in a heavily built-up area. Pipits are a really interesting group of passerines that have many adaptations for life in open areas like grasslands, meadows and tundra but there are also species of woodlands, rocky coasts and watercourses. They’re often leggy (for passerines) and with notably long hallux claws.

Olive-backed pipit  Anthus hodgsoni , in characteristic theropod skulking pose. The Olive-backed pipit is a widespread Asian species, occurring from the edge of the Urals to the coasts of the Pacific and Indian oceans. Image: Darren Naish.

Olive-backed pipit Anthus hodgsoni, in characteristic theropod skulking pose. The Olive-backed pipit is a widespread Asian species, occurring from the edge of the Urals to the coasts of the Pacific and Indian oceans. Image: Darren Naish.

Pipits are closely allied to wagtails (both belong together within Motacillidae), and I saw one representative of that group too: the White wagtail Motacilla alba, a species well known for occurring in pedestrianised areas and other places with big, flat expanses of nothing. The White wagtail is well known for being highly variable across its vast range and numerous subspecies have been named (cue debate about which of these warrant specific status…). The one I saw is M. a. alboides, sometimes called Hodgson’s wagtail and associated with Laos, Vietnam, Myanmar and the Himalayas as well as the southern half of China (Alström & Mild 2003). Motacillids, incidentally, are part of the passerine clade Passeroidea, which is weird because it means that they’re surrounded in the phylogeny by sparrow-like birds (e.g., Selvatti et al. 2015).

Having mentioned sparrows, I saw Eurasian tree sparrow Passer montanus on several occasions, which is not surprising since this is the sparrow of China. House P. domesticus and Spanish P. hispanicus sparrows occur in China too, but only at comparatively few spots in the far west. China is also home to the Rock sparrow Petronia petronia and several snowfinches (Montifringilla).

At left: two different Hodgson’s wagtail  Motacilla alba alboides , a subspecies of White wagtail. At right: Eurasian tree sparrow  Passer montanus . Images: Darren Naish.

At left: two different Hodgson’s wagtail Motacilla alba alboides, a subspecies of White wagtail. At right: Eurasian tree sparrow Passer montanus. Images: Darren Naish.

Thrushes and Old World flycatchers. Let’s talk briefly about thrushes. The blackbirds in China – here I’m talking about the black thrushes typically called ‘blackbirds’, not the American ‘blackbirds’ included in the group Icteridae – have conventionally been regarded as subspecies of T. merula, the thrush that occurs across Europe, Asia and northern Africa where it’s mostly known as the Common or Eurasian blackbird. However, some authors now regard at least some Chinese blackbirds as belonging to a distinct species: the Chinese blackbird T. mandarinus. Sichuan is apparently home to the subspecies T. m. sowerbyi, so this might be the bird I saw. In the field, the males struck me as being slightly greyer on the wings and browner on the body than the blackbirds at home in England, but the differences were minor.

A blackbird, foraging at the edge of a pond where stones have been stuck into cement. I would have thought that this is a Common or Eurasian blackbird  Turdus merula , but it might be a Chinese blackbird  T. mandarinus . Image: Darren Naish.

A blackbird, foraging at the edge of a pond where stones have been stuck into cement. I would have thought that this is a Common or Eurasian blackbird Turdus merula, but it might be a Chinese blackbird T. mandarinus. Image: Darren Naish.

Thrushes are closely allied to Old World flycatchers, properly called Muscicapidae. China is home to loads of them, among them wheatears, stonechats, forktails and other chats, various redstarts, robins, nightingales, shortwings, bush robins and rock thrushes, many Ficedula and Muscicapa flycatchers, various niltavines, and others. I wasn’t in the right sort of places to see any of these, but I did see an iconic Asian member of the group: the Oriental magpie-robin Copsychus saularis, a familiar species of gardens and forests. Magpie-robins – also called shamas – are unusual enough that (together with the Cercotrichas scrub robins) they belong to their own muscicapid lineage, Copsychini (Sangster et al. 2010). Magpie-robins are sexually dimorphic. Males are strikingly black and white while females are mostly grey on the head and body, and I saw both.

Oriental magpie-robin  Copsychus saularis  male and female (male at top, female below). The male in the images here lived right next to a factory. Image: Darren Naish.

Oriental magpie-robin Copsychus saularis male and female (male at top, female below). The male in the images here lived right next to a factory. Image: Darren Naish.

Another member of the muscicapid clade Copsychini, a male White-rumped shama  Copsychus malabaricus . This one was photographed in captivity in the UK, not in Asia. Image: Darren Naish.

Another member of the muscicapid clade Copsychini, a male White-rumped shama Copsychus malabaricus. This one was photographed in captivity in the UK, not in Asia. Image: Darren Naish.

Starlings. China is inhabited by about 20 starling species, meaning that someone only familiar with the dark, iridescent Common starling Sturnus vulgaris – like me – is potentially in for a real treat. Alas, my only sightings were of the gregarious Red-billed starling S. sericeus. Like many of the Asian Sturnus species, its plumage combines black wing feathers with white patches, a varicoloured look to the body and a distinctly demarcated head. The birds I photographed look darker than those in many images of this species online but that’s mostly because I had to up the contrast to make them usable.

Red-billed starling  Sturnus sericeus  in downtown Zigong. There were about 15 birds in this group; the bird shown at left is the same individual seen at far right in the photo on the right. Image: Darren Naish.

Red-billed starling Sturnus sericeus in downtown Zigong. There were about 15 birds in this group; the bird shown at left is the same individual seen at far right in the photo on the right. Image: Darren Naish.

And that’s it! I emphasise that the birds I’ve discussed here weren’t the sort that people travel half-way round the world to see, or go to remote places to tick off their lists. On the contrary, these were all birds that were easy to see in urban and suburban settings and my seeing of them was mostly opportunistic and done with minimal effort. My point in discussing the birds I saw was to explain what a normal person, interested enough in wildlife to go and look for it but not to spend huge sums of money on dedicated adventures, might bump into. The answer is… quite a lot, even in these times of environmental degradation and destruction. Some of my identifications could well be off, in which case please feel happy to correct me. More birds here sometime real soon, thanks for reading.

If you enjoyed this article and would like to see me do more, please consider supporting this blog (for as little as $1 per month) at patreon. The more support I receive, the more financially viable this project becomes and the more time and effort I can spend on it. Thank you :)

 For previous TetZoo articles relevant to the birds discussed here, see…

Refs - -

Alström, P., Mild, K. & Zetterström, B. 2003. Pipits and Wagtails of Europe, Asia and North America. Christopher Helm, London.

Harrap, S. & Quinn, D. 1996. Tits, Nuthatches and Treecreepers. A & C Black, London.

Jønsson, K. A. & Fjeldså, J. 2006. A phylogenetic supertree of oscine passerine birds (Aves: Passeri). Zoologica Scripta 35, 149-186.

MacKinnon, J., & Phillipps, K. 2000. A Field Guide to the Birds of China. Oxford University Press, Oxford.

Sangster, G., Alström, P., Forsmark, E. & Olsson, U. 2010. Multi-locus phylogenetic analysis of Old World chats and flycatchers reveals extensive paraphyly at family, subfamily and genus level (Aves: Muscicapidae). Molecular Phylogenetics and Evolution 57, 380-392.

Selvatti, A. P., Gonzaga, L. P. & Russo, C. A. de M. 2015. A Paleogene origin for crown passerines and the diversification of the Oscines in the New World. Molecular Phylogenetics and Evolution 88, 1-15.

Cocks-of-the-Rock, Extreme Cotingas

Among the most flamboyant and striking of South American birds are the two Rupicola species, known commonly as ‘cocks-of-the-rock’ (though it looks really odd seeing the name written as a plural like that).

The very first image of a cock-of-the-rock I ever recall seeing. From the cover of   Charles Tunnicliffe’s  Tropical Birds    of 1960. This is one of the famously influential ‘tea card’ books, where you have to collect the cards to complete the book. Image: Darren Naish.

The very first image of a cock-of-the-rock I ever recall seeing. From the cover of Charles Tunnicliffe’s Tropical Birds of 1960. This is one of the famously influential ‘tea card’ books, where you have to collect the cards to complete the book. Image: Darren Naish.

These two species – the Guianan cock-of-the-rock R. rupicola of the Guianan Shield and the Andean cock-of-the-rock R. peruvianus of the tropical Andes (from Venezuela in the north to Peru in the south) – are members of Cotingidae, a large group of South American passerines that’s part of Tyrannides or Tyrannida, a major clade within the suboscines. Suboscines (also called Tyranni) also includes the ovenbirds of the Americas, and the Old World pittas, broadbills and kin.

A much-simplified depiction of passerine phylogeny. Suboscines and oscines form the two great groups. This diagram is one of a huge number produced for my in-prep textbook on the vertebrate fossil record,   on which go here  . Image: Darren Naish.

A much-simplified depiction of passerine phylogeny. Suboscines and oscines form the two great groups. This diagram is one of a huge number produced for my in-prep textbook on the vertebrate fossil record, on which go here. Image: Darren Naish.

I’m mostly writing about them because I’ve essentially never written about cotingas at TetZoo at all, nor about their close relatives (the tityras and kin, the manakins and so on). I have, however, written about an essential book on these birds: Guy Kirwan and Graeme Green’s 2011 Cotingas and Manakins, an indispensable work on these groups. (my review is here, though it’s now missing all the images that originally made it fun to look at, SIGH).

If you’re seriously interested in cotingas and manakins (and their close kin), you should obtain   Kirwan & Green (2011)  . It’s a brilliant book. Image: Christopher Helm.

If you’re seriously interested in cotingas and manakins (and their close kin), you should obtain Kirwan & Green (2011). It’s a brilliant book. Image: Christopher Helm.

Cocks-of-the-rock are unusual enough that they were regarded as worthy of their own family (Rupicolidae) until as recently as the 1970s. Details of the thigh arteries were thought by some experts to indicate possible closeness to tyrant-flycatchers rather than to cotingas but in several aspects of anatomy (like syringeal type), they’re fairly typical cotingas. In 1971, cotinga expert David Snow sent Charles Sibley a cock-of-the-rock egg collected from Guyana, the resulting experiments on the egg’s chemical composition proving, to Sibley’s satisfaction, that Rupicola should be included within Cotingidae (Snow 1973). More specifically, molecular data groups them with Phoenicircus (red cotingas) and perhaps with Snowornis (green pihas) in a clade that’s named Rupicolinae (Ohlson et al. 2007, Tello et al. 2009). It should be noted that Phoenicircus is sufficient unusual for a cotinga – it has carotenoid-rich, saturated red plumage, fused third and fourth toes and a manakin-like gestalt – that it has at times been suggested, erroneously it seems, to be an ally of manakins (Snow 1973).

Guianan red cotinga ( Phoenicircus carnifex ) in hand. What a striking bird. Image:   Etienne Littlefair  , wikipedia, CC BY 2.5 (original   here  ).

Guianan red cotinga (Phoenicircus carnifex) in hand. What a striking bird. Image: Etienne Littlefair, wikipedia, CC BY 2.5 (original here).

Cocks-of-the-rock are birds of tropical and subtropical montane forests, most typically those with rocky gorges and areas where there are caves and large boulders. Such places are crucial for nesting: the nests (which are made of mud, vegetation and a bit of saliva) are constructed on the vertical side of a cave or rock in a shaded location, often close to running water. Nesting is also semi-colonial (Kirwan & Green 2011). Having said that they’re montane forest birds, there’s a single record of a Guianan cock-of-the-rock in the northern savannahs of Surinam, this perhaps being the consequence of a long dry season that forced the bird to move. They’re otherwise mostly sedentary but are powerful, agile fliers.

Images showing  Rupicola  in life virtually always show them in forested settings, but they also frequent caves, the walls of ravines, and boulder fields. These photos, showing a female Andean cock-of-the-rock at her nest and while elsewhere in a cave, were taken in the Cueva del Higueron, Peru. Images:   JYB Devot  , wikipedia, CC BY-SA 4.0 (originals   here   and   here  ).

Images showing Rupicola in life virtually always show them in forested settings, but they also frequent caves, the walls of ravines, and boulder fields. These photos, showing a female Andean cock-of-the-rock at her nest and while elsewhere in a cave, were taken in the Cueva del Higueron, Peru. Images: JYB Devot, wikipedia, CC BY-SA 4.0 (originals here and here).

Both Rupicola species are large as cotingas go, with males reaching 33-34 cm in total, and they’re spectacularly red or orange. Sexual dimorphism is pronounced, the most obvious differences involving the big, fan-shaped dorsal crests of males. The crest is formed of two rows of feathers that are in close contact along their middle surfaces. In the Guianan R. rupicola, silky filaments emerge from the rump and back and trail from and over the animal’s sides. Females are darker and browner than males and with a crest that’s more of a tuft than a giant dorsal fan. Both species are lek breeders, the Andean species perching on lianas and other structures some metres off the ground while the Guianan species does its displaying on the ground.

Male Guianan cock-of-the-rock, showing characteristic filaments and ‘orange peel’-like feathers on the back. Image: Aisse Gaertner, wikipedia, CC BY SA 4.0 (original   here  ).

Male Guianan cock-of-the-rock, showing characteristic filaments and ‘orange peel’-like feathers on the back. Image: Aisse Gaertner, wikipedia, CC BY SA 4.0 (original here).

Numerous vocalisations – some likened to chicken crowing and cat meowing, there’s also a bugling ‘assembly call’ – are made at the leks, and also while foraging and when calling attention to the sighting of a predator. A modified tenth primary feather is used by the Guianan species to make a whistling noise.

A captive Andean cock-of-the-rock, photographed at San Diego Zoo. The lush black wings and lack of trailing filaments make this species look very different from the Guianan species. Not all Andean cocks-of-the-rock are the same: there are at least four distinct populations, conventionally identified as subspecies. Image: Jerry Thompson, CC BY 2.0, wikipedia (original   here  ).

A captive Andean cock-of-the-rock, photographed at San Diego Zoo. The lush black wings and lack of trailing filaments make this species look very different from the Guianan species. Not all Andean cocks-of-the-rock are the same: there are at least four distinct populations, conventionally identified as subspecies. Image: Jerry Thompson, CC BY 2.0, wikipedia (original here).

The bill is long, broad-based and slightly hooked but usually mostly hidden by the crest. It’s used to procure both fruit as well as arthropods and small vertebrates. While these birds are best characterised as frugivorous, it’s interesting that they also catch and eat frogs, lizards and small snakes and such items are said to be important in the diet of nestlings (Kirwan & Green 2011). Mice have been eaten by captive Andean cock-of-the-rock. Such raptors as hawk-eagles, accipiters and forest falcons are known to prey on Rupicola (Kirwan & Green 2011). UPDATE: there are also observations of them chasing and eating small passerines, and this might even be a regular habit (Mahecha et al. 2018). Thanks to Max Kirsch for passing on this information.

Male Guianan cock-of-the-rock, in a pose which allows us to see the length of the bill through the lower part of the fan of feathers. Note that this individual is missing part of one of his toes. Image: Juniorgirotto, wikipedia, CC BY-SA 4.0 (original   here  ).

Male Guianan cock-of-the-rock, in a pose which allows us to see the length of the bill through the lower part of the fan of feathers. Note that this individual is missing part of one of his toes. Image: Juniorgirotto, wikipedia, CC BY-SA 4.0 (original here).

In combining frugivory with large size, marked sexual dimorphism and especially elaborate sexual displays, cocks-of-the-rock are ‘extreme’ cotingas, superficially similar to the distantly related bellbirds (Snow 1973), and in some ways suboscine ‘equivalents’ of the even more distantly related birds-of-paradise (Kirwan & Green 2011).

Museum specimens of  Rupicola  don’t fare well after decades in sunlight, it seems. I’ve never seen a live cock-of-the-rock… so far, only museum specimens like this Guianan one. Image: Darren Naish.

Museum specimens of Rupicola don’t fare well after decades in sunlight, it seems. I’ve never seen a live cock-of-the-rock… so far, only museum specimens like this Guianan one. Image: Darren Naish.

Needless to say, there’s tons more to say about cotingas and their allies, but this, at least, is a start.

For previous TetZoo articles on passerines (concentrating, once again, on the few articles that haven’t been destroyed via the removal of their images), see…

 If you enjoyed this article and want to see me do more, more often, please consider supporting me at patreon. The more funding I receive, the more time I’m able to devote to producing material for TetZoo and the more productive I can be on those long-overdue book projects. Thanks!

Refs - -

Kirwan, G. & Green, G. 2011. Cotingas and Manakins. Christopher Helm, London.

Mahecha, L., Villabona, N., Sierra, L., Ocampo, D. & Laverde-R., O. 2018. The Andean Cock-of-the-rock (Rupicola peruvianus) is a frugivorous bird predator. The Wilson Journal of Ornithology 130, 558-560.

Ohlson, J., Prum, R. O. & Ericson, P. G. P. 2007. A molecular phylogeny of the cotingas (Aves: Cotingidae). Molecular Phylogenetics and Evolution 42, 25-37.

Snow, D. W., 1973. The classification of the Cotingidae (Aves). Breviora 409, 1-27.

Tello, J. G., Moyle, R. G. Marchese, D. J. & Cracraft, J. 2009. Phylogeny and phylogenetic classification of the tyrant flycatchers, cotingas, manakins, and their allies. Cladistics 25, 429-467.

The Most Amazing TetZoo-Themed Discoveries of 2018

As we hurtle toward the end of the year – always a scary thing because you realise how much you didn’t get done in the year that’s passed – it’s time to look back at just a little of what happened in 2018. This article is not anything like a TetZoo review of 2018 (I’ll aim to produce something along those lines in early 2019), but, rather, a quick look at some of the year’s neatest and most exciting zoological (well, tetrapodological) discoveries. As per usual, I intended to write a whole lot more – there are so many things worthy of coverage – and what we have here is very much an abridged version of what I planned.

Animals we will meet below, a montage. Images: (c) Philippe Verbelen, (c) Kristen Grace, Florida Museum of Natural History,  Graham  et al . (2018) , CC BY-SA 4.0.

Animals we will meet below, a montage. Images: (c) Philippe Verbelen, (c) Kristen Grace, Florida Museum of Natural History, Graham et al. (2018), CC BY-SA 4.0.

Thanks as always to those supporting me at patreon. Time is the great constraint (and finance, of course), and the more support I have, the more time I can spend on producing blog content. Anyway, to business…

The Rote leaf warbler. New passerine bird species are still discovered on a fairly regular basis; in fact three were named in 2018*. One of these is especially remarkable. It’s a leaf warbler, or phylloscopid, endemic to Rote in the Lesser Sundas, and like most members of the group is a canopy-dwelling, insectivorous, greenish bird that gleans for prey among foliage. Leaf warblers are generally samey in profile and bill shape, so the big deal about the new Rote species – the Rote leaf warbler Phylloscopus rotiensis – is that its bill is proportionally long and curved, giving it a unique look within the group. It superficially recalls a tailorbird. Indeed, I think it’s likely that the species would be considered ‘distinct enough’ for its own genus if there weren’t compelling molecular data that nests it deeply within Phylloscopus (Ng et al. 2018).

* The others are the Cordillera Azul antbird Myrmoderus eowilsoni and the Western square-tailed drongo Dicrurus occidentalis.

A Common chiffchaff  Phylloscopus collybita  encountered in western Europe, a familiar Eurasian-African phylloscopid leaf warbler. Image: Darren Naish.

A Common chiffchaff Phylloscopus collybita encountered in western Europe, a familiar Eurasian-African phylloscopid leaf warbler. Image: Darren Naish.

The story of the Rote leaf warbler’s discovery is interesting in that it’s yet another recently discovered species whose existence and novelty was suspected for a while. Colin Trainor reported leaf warblers on Rote in 2004 but never got a good look at them, Philippe Verbelen observed them in 2009 and realised how anatomically unusual they were, and it wasn’t until 2015 that a holotype specimen was procured (Ng et al. 2018). I’ve mentioned before the fact that documenting and eventually publishing a new species is rarely an instant see it catch it publish it event, but a drawn-out one that can take decades, and here we are again. Also worth noting is that the existence of a leaf warbler on Rote was not predicted based on our prior knowledge of leaf warbler distribution in view of the deep marine channel separating Rote from Timor and lack of any prior terrestrial connection. Yeah, birds can fly, but members of many groups prefer not to cross deep water channels. In this case, this did, however, happen and most likely at some point late in the Pliocene (Ng et al. 2018).

Rote leaf warbler in life, a novel member of an otherwise conservative group. Image: (c) Philippe Verbelen.

Rote leaf warbler in life, a novel member of an otherwise conservative group. Image: (c) Philippe Verbelen.

Rote has yielded other new passerines in recent years – the Rote myzomela Myzomela irianawidodoae (a honeyeater) was named in 2017 – and it’s possible that one or two others might still await discovery there.

Neanderthal cave art. Hominins don’t get covered much at TetZoo, which is weird given the amazing pace of relevant recent discoveries and the fact that they’re totally part of the remit. I mostly don’t cover them because I feel they’re sufficiently written about elsewhere in the science blogging universe, plus I tend to be preoccupied with other things. Nevertheless, I take notice, and of the many very interesting things published in 2018 was Hoffman et al.’s (2018) announcement of several different pieces of Spanish rock art, seemingly made by Neanderthals Homo neanderthalensis. The art concerned involves hand stencils, abstract lines, squares and amorphous patches of pigment, always marked in red.

Red abstract markings, discovered in several Spanish caves, are old, and in fact were seemingly made by hominins long before  H. sapiens  moved into Europe. The red sinuous marking and system of squares and lines near the middle of this photo are purported to have been made by Neanderthals (other images, depicting animals and present adjacent to these markings, were seemingly created more recently by  H. sapiens  individuals). Image: (c) P. Saura.

Red abstract markings, discovered in several Spanish caves, are old, and in fact were seemingly made by hominins long before H. sapiens moved into Europe. The red sinuous marking and system of squares and lines near the middle of this photo are purported to have been made by Neanderthals (other images, depicting animals and present adjacent to these markings, were seemingly created more recently by H. sapiens individuals). Image: (c) P. Saura.

The main reason for the attribution of this art to Neanderthals is its age: uranium-thorium dating shows that it’s older than 64ka, which therefore makes it more than 20ka older than the time at which H. sapiens arrived in Europe (Hoffman et al. 2018). That seems compelling, and it’s consistent with a building quantity of evidence for Neanderthal cultural complexity which involves the use of shells, pigments, broken stalagmites and so on.

One of the most famous pieces of claimed Neanderthal rock art: the Gorham's Cave ‘hashtag’ from Gibraltar. Image: (c) Stewart Finlayson.

One of the most famous pieces of claimed Neanderthal rock art: the Gorham's Cave ‘hashtag’ from Gibraltar. Image: (c) Stewart Finlayson.

I should add here, however, that I’m slightly sceptical of the use of age as a guide to species-level identification. Why? Well, we have evidence from elsewhere in the fossil record that the range of a hominin species can be extended by around 100ka without serious issue (witness the 2017 announcement of H. sapiens remains from north Africa; a discovery which substantially increased the longevity of our species). In view of this, would a 20ka extension of H. sapiens’ presence in Europe be absolutely out of the question? Such a possibility is not supported by evidence yet, and I don’t mean to appear at all biased against Neanderthals.

A tiny Cretaceous anguimorph in amber, and other Mesozoic amber animals. As you’ll know if you follow fossil-themed news, recent years have seen the discovery of an impressive number of vertebrate fossils in Cretaceous amber, virtually all of which are from Myanmar and date to around 99 million years old. They include tiny enantiornithine birds, various feathers (most recently racquet-like ‘rachis dominated feathers’), the tiny snake Xiaophis, early members of the gecko and chameleon lineages and the small frog Electrorana. Many of these finds were published in 2018 and any one could count as an ‘amazing’ discovery.

The  Barlochersaurus winhtini  holotype, from Daza  et al . (2018).

The Barlochersaurus winhtini holotype, from Daza et al. (2018).

However, there’s one fossil in particular that I find ‘amazing’, and it hasn’t received all that much coverage. It’s the tiny (SVL* 19.1 mm!), slim-bodied anguimorph Barlochersaurus winhtini, named for a single, near-complete specimen subjected to CT-scanning (Daza et al. 2018). Remarkable images of its anatomical details are included in Daza et al.’s (2018) paper. It has short limbs, pentadactyl hands and feet and a slim, shallow, bullet-shaped skull. Phylogenetic study finds it to be somewhere close to, or within, Platynota (the clade that includes gila monsters and kin, and monitors and kin), or perhaps a shinisaurian (Daza et al. 2018). It could be a specialised dwarf form, or somehow more reflective of the ancestral bauplan for these anguimorph groups. Either way, it’s exciting and interesting. What next from Burmese amber?

* snout to vent length

Barlochersaurus  in life. It’s about the size of a paperclip. Image: (c) Kristen Grace, Florida Museum of Natural History ( original here ).

Barlochersaurus in life. It’s about the size of a paperclip. Image: (c) Kristen Grace, Florida Museum of Natural History (original here).

The Reticulated Siren. Sirens are very special, long-bodied aquatic salamanders with reduced limbs and bushy external gills. They’re very weird. They can reach 95 cm in length (and some fossil species were even larger), lack hindlimbs and a pelvis, have a horny beak and pavements of crushing teeth, and eat plants in addition to gastropods, bivalves and other animal prey. A longish article on siren biology and evolution can be found here at TetZoo ver 3.

A life reconstruction of the Cretaceous siren  Habrosaurus , showing features typical of the group. This animal could reach 1.5 m in total length. Image: Darren Naish (prepared for my in-prep texbook The Vertebrate Fossil Record,   on which go here  ).

A life reconstruction of the Cretaceous siren Habrosaurus, showing features typical of the group. This animal could reach 1.5 m in total length. Image: Darren Naish (prepared for my in-prep texbook The Vertebrate Fossil Record, on which go here).

Until recently, just four living siren species were recognised. But it turns out that indications of a fifth – endemic to southern Alabama and the Florida panhandle – have been around since 1970 at least. Furthermore, they pertain to a big species, similar in size to the Great siren Siren lacertina. Known locally as the ‘leopard eel’ (a less than ideal moniker, given that there’s a real eel that already goes by this name), this animal has been published by Sean Graham and colleagues in the open-access journal PLoS ONE (Graham et al. 2018) wherein it’s formally christened the Reticulated siren S. reticulata. It reaches 60 cm in total length, has dark spots across its dorsal surface and a proportionally smaller head and longer tail than other Siren species.

A museum specimen of the species has been known since 1970 when its finder noted that it did “not conform” to descriptions of known species, and live specimens were collected by David Steen and colleagues in 2009 and 2014. Again, note that discovery and recognition was a drawn-out process. The discovery has, quite rightly, received a substantial amount of media coverage, and many interesting articles about the find are already online. Many of you will already know of David Steen due to his social media presence and Alongside Wild charity (which I’m proud to say I support via pledges at patreon).

The Reticulated siren paratype specimen, as described by  Graham  et al . (2018) . Image:  Graham  et al . (2018) , CC BY-SA 4.0.   Original here.

The Reticulated siren paratype specimen, as described by Graham et al. (2018). Image: Graham et al. (2018), CC BY-SA 4.0. Original here.

The idea that a new living amphibian species 60 cm long might be discovered anew in North America in 2018 is pretty radical. I’m reminded of the 2009 TetZoo ver 2 article ‘The USA is still yielding lots of new extant tetrapod species’ (which is less fun to look at than it should be, since images aren’t currently showing at ver 2). Furthermore, Graham et al. (2018) discovered during their molecular phylogenetic work that some other siren species are not monophyletic but likely species complexes, in which case taxonomic revision is required and more new species will probably be named down the line.

And that’s where I must end things, even though there are easily another ten discoveries I’d like to write about. This is very likely the last article I’ll have time to deal with before Christmas. As I write, I’m preparing to leave for the Popularising Palaeontology conference which happens in London this week (more info here), and then there are Christmas parties and a ton of consultancy jobs to get done before the New Year. On that note, I’ll sign off with a festive message, as is tradition. Best wishes for the season, and here’s to a fruitful and action-packed 2019. Special thanks once again to those helping me out at patreon.

TetZooniverse-Christmas-2018-tiny-from-Darren-Naish.jpg

For previous TetZoo articles relevant to various of the subjects covered here, see…

Refs - -

Daza, J. D., Bauer, A. M., Stanley, E. L., Bolet, A., Dickson, B. & Losos, J. B. 2018. An enigmatic miniaturized and attenuate whole lizard from the mid-Cretaceous amber of Myanmar. Breviora 563, 1-18.

Graham, S. P., Kline, R., Steen, D. A. & Kelehear, C. 2018. Description of an extant salamander from the Gulf Coastal Plain of North America: the Reticulated Siren, Siren reticulata. PLoS ONE 13 (12): e0207460.

Hoffman, D. L., Standish, C. D., García-Diez, M., Pettitt, P. B., Milton, J. A., Zilhão, J., Alcolea-González, J. J., Cantelejo-Duarte, P., Collado, H., de Balbín, R., Lorblanchet, M., Ramos-Muñoz, J., Weniger, G.-Ch. & Pike, A. W. G. 2018. U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 359, 912-915.

Ng, N. S. R., Prawiradilaga, D. M., Ng, E. Y. X., Suparno, Ashari, H., Trainor, C., Verbelen, P. & Rheindt, F. E. 2018. A striking new species of leaf warbler from the Lesser Sundas as uncovered through morphology and genomics. Scientific Reports 8: 15646.

Pouches of the Sungrebe

Among the most obscure and poorly known of the world’s living birds are the finfoots or heliornithids, a group of duck-sized, vaguely grebe-like swimmers of the American, African and south-east Asian tropics. There are just three extant species. Heliornithids are gruiforms (part of the crane + rail clade), recent studies indicating a close relationship with the Afro-Madagascan flufftails, a group conventionally included within the rail family but increasingly thought to represent a separate lineage termed Sarothruridae (García-R. et al. 2014).

The Sungrebe is a boldly marked heliornithid that occurs from southern Mexico in the north to Bolivia and northern Argentina in the south. It is c 30 cm long, remains relatively abundant, and is associated with swamps, marshes and well-vegetated streams and rivers. Image: L. Catchick, wikipedia, CC BY 3.0 ( original here ).

The Sungrebe is a boldly marked heliornithid that occurs from southern Mexico in the north to Bolivia and northern Argentina in the south. It is c 30 cm long, remains relatively abundant, and is associated with swamps, marshes and well-vegetated streams and rivers. Image: L. Catchick, wikipedia, CC BY 3.0 (original here).

There’s a lot to say about heliornithids – their biogeography and fossil record is confusing and fascinating – but here I want to focus on one particularly interesting aspect of their biology. Namely, that the tropical American Sungrebe Heliornis fulica (sometimes called the American finfoot) has pouches, and uses these pouches in the protection and transportation of its young. The chicks are altricial (that is, unable to walk or look after themselves) and hatch after a ridiculously short incubation period of just 10-11 days. Incubation is carried out by both parents, but it’s the male alone who has the pouches and is able to transport the chicks (Bertram 1996).

Waitaminute… pouches? In a bird? How exactly do these structures work? What do they look like? And where are they located? Books and articles that mention the pouches generally say that there are two of them and that they’re under the wings, but you don’t get much more detail than that. The primary source of detailed information on what’s going on here is Miguel Álvarez del Toro’s 1971 article, a semi-legendary paper that most interested people are aware of due to the summarised description of its contents provided by Brian Bertram in his heliornithid chapter in Handbook of the Birds of the World, Volume 3. Bertram (1996) didn’t provide photos or diagrams, basically because those that exist are not good enough or of the right style for HBW. But Álvarez del Toro (1971) did.

Yes, there are published photos of Sungrebe babies inside their father’s pouches. Or.. there’s one photo, anyway. Here it is, and it comes from Álvarez del Toro’s 1971 paper. Image: Álvarez del Toro (1971).

Yes, there are published photos of Sungrebe babies inside their father’s pouches. Or.. there’s one photo, anyway. Here it is, and it comes from Álvarez del Toro’s 1971 paper. Image: Álvarez del Toro (1971).

A far older publication – one of Prince Maximilian of Wied-Neuwied’s volumes of his Beiträge zur Naturgeschichte von Brasilien – also includes discussion and description of sungrebe pouches. I haven’t seen this reference but it was cited by Álvarez del Toro (1971).

Pouch configuration, with feathering removed and chick in place, in the male Sungrebe, as illustrated by Álvarez del Toro (1971). This was drawn directly from a specimen. Image: Álvarez del Toro (1971).

Pouch configuration, with feathering removed and chick in place, in the male Sungrebe, as illustrated by Álvarez del Toro (1971). This was drawn directly from a specimen. Image: Álvarez del Toro (1971).

If – for now – we ignore feathers, the pouches are essentially shallow, oval pockets formed by muscular pleats of skin that extend along the the side of the chest. The bird appears to have some muscular control over the shape and turgidity of the pleats (Álvarez del Toro (1971). A single chick can fit in each pouch, but it would likely fall out if the structure consisted of skin folds and a recessed area alone. Here, it seems, is where the feathers come in: a number of long, curved feathers grow upwards and backwards from the lower part of the side of the chest and form a feathery outer wall, this now meaning that the recess becomes a secure pouch. And let me state again that all of this is exclusive to males: females do not have any of these anatomical peculiarities.

Álvarez del Toro’s (1971) illustration of the pouch, now with the feathering in place. The feathers form a lateral wall to the pouch and keep the chick in place. Image: Álvarez del Toro (1971).

Álvarez del Toro’s (1971) illustration of the pouch, now with the feathering in place. The feathers form a lateral wall to the pouch and keep the chick in place. Image: Álvarez del Toro (1971).

When are the pouches used? I used to think that they were only there for emergency reasons (say, nest invasion by a predator), and possibly not even used by every sungrebe father. This appears to be incorrect. Álvarez del Toro (1971) disturbed a nesting male sungrebe and then saw it both swimming and flying with “two tiny heads sticking out from the plumage of the sides under the wings”, so this might support the idea of ‘emergency’ function. But his conclusion overall was that the chicks are (somehow) placed within the pouches immediately after hatching, kept there for days as they grow their plumage and become more capable, and are fed and kept clean by the male all the while: “While carrying the young, the male reaches beneath the wing to feed them and remove the droppings” (Álvarez del Toro’s 1971, p. 86).

Heliornis , as illustrated for the HUGE bird section of the in-prep  The Vertebrate Fossil Record . Yes, there are fossil heliornithids (or… claimed heliornithids, anyway).   Progress on this book can be viewed here at my patreon.   Image: Darren Naish.

Heliornis, as illustrated for the HUGE bird section of the in-prep The Vertebrate Fossil Record. Yes, there are fossil heliornithids (or… claimed heliornithids, anyway). Progress on this book can be viewed here at my patreon. Image: Darren Naish.

And that, as far as I can tell, about sums up everything we know. The exact and precise details as goes what’s going on here haven’t been worked out, and a full and detailed study is still required. Presumably that will happen eventually. Are these structures definitely a novelty of Heliornis, or are they more widespread, and are there similar, related or relevant structures elsewhere in related species? It really doesn’t seem that there are, but Bertram (1996) noted that it might be difficult to say for sure given that much of our anatomical knowledge on these animals (as in, obscure gruiforms in general) comes from dried skins.

Those of you familiar with the arcane ornithology literature will know that the transportation of chicks by adults has been mooted for a reasonable range of species, including nightjars, woodcocks and other waders, various galliforms, anseriforms and others (see Ad Cameron’s illustrations below - the nightjar illustrations are almost certainly fanciful - from Perrins (1992)). Most of these cases are likely or almost definitely erroneous… and they don’t involve pouches…. but not all are. Jacanas definitely transport their babies by clasping them with their wings, but they can’t do this while flying.

Ornithologists spent decades arguing over whether nightjars (these are European nightjars  Caprimulgus europaeus ) and Eurasian woodcocks  Scolopax rusticola  carry their eggs and/or chicks in flight. It now seems that woodcocks do do this (as do other waders, like some shanks), but that nightjars seemingly don’t. Image: Ad Cameron, in Perrins (1992).

Ornithologists spent decades arguing over whether nightjars (these are European nightjars Caprimulgus europaeus) and Eurasian woodcocks Scolopax rusticola carry their eggs and/or chicks in flight. It now seems that woodcocks do do this (as do other waders, like some shanks), but that nightjars seemingly don’t. Image: Ad Cameron, in Perrins (1992).

I’d like to finish this article by taking you on a weird, speculative tangent in the vein of All Yesterdays (Conway et al. 2012). Regular readers of this blog will know that I often write about extinct dinosaurs, and – on occasion – about speculations pertaining to the behaviour or anatomy of extinct dinosaurs. If we were asked (as we occasionally are) how likely it might be that extinct dinosaurs – say, for example, hadrosaurs or therizinosaurs – had pouches in which they could carry and transport their young, we would typically respond by noting the total lack of evidence that might support such a possibility, and the sheer improbability of such a thing given the anatomy of the living animals that ‘bracket’ the relevant fossil animals on the family tree.  There are no pouches in crocodylians or those living birds that diverged earliest in bird history, nor are there indications of them in stem-members of these lineages.

There are no pouches here, but at least we have a speculative scene where an adult maniraptoran (presumably a dromaeosaur) is carrying its young. Image: Alex Sone ( original here ).

There are no pouches here, but at least we have a speculative scene where an adult maniraptoran (presumably a dromaeosaur) is carrying its young. Image: Alex Sone (original here).

But novelty does arise – phylogenetic brackets can be violated, as I’ve said, to the amusement of some, at least once here in the past – and there’s no way we’d predict the anatomy of Heliornis if we only knew of it as a fossil. Could, then, that most bizarre novelty – a pouch for carrying babies – have arisen elsewhere in dinosaurs? To suggest such would be a grotesque and baseless novelty of the worst kind. Yup. Did I mention All Yesterdays?

My thanks to the anonymous colleague who kindly provided me with the key piece of literature that allowed the production of this article. And thanks to those who contributed to the poll at the Tetrapod Zoology facebook group and thereby forced this article to the top of the list.

Put ‘A really weird bird’ into a poll … and, wow, people really like really weird birds. This is a screengrab from a facebook poll.

Put ‘A really weird bird’ into a poll … and, wow, people really like really weird birds. This is a screengrab from a facebook poll.

Thanks to those supporting this work – and the very blog itself – via pledges at patreon. You can support what I do and see works-in-prep behind the scenes, via pledges as small as $1 per month.

Refs - -

Álvarez del Toro, M. 1971. On the biology of the American finfoot in southern Mexico. Living Bird 10, 79-88.

Bertram, B. C. R. 1996. Family Heliornithidae (finfoots). In del Hoyo, J., Elliott, A. & Sargatal, J. (eds) Handbook of the Birds of the World, Volume 3: Hoatzin to Auks. Lynx Edicions, Barcelona, pp. 210-217.

Conway, J., Kosemen, C. M., Naish, D. & Hartman, S. 2012. All Yesterdays: Unique and Speculative Views of Dinosaurs and Other Prehistoric Animals. Irregular Books.

Garcia-R, J. C., Gibb, G. C. & Trewick, S. A. 2014. Deep global evolutionary radiation in birds: diversification and trait evolution in the cosmopolitan bird family Rallidae. Molecular Phylogenetics and Evolution 81, 96-108.

Perrins, C. 1992. Bird Life: An Introduction to the World of Birds. Magna Books, Liecester [sic].

Erroll Fuller’s The Passenger Pigeon

Most readers of this blog will be familiar with Erroll Fuller and the huge quantity he has published on recently extinct birds. His books typically combine a discussion on the biology, history and extinction of the species, a section on existing specimens (as in, museum mounts and skins and eggs and so on), and some good coverage of the animal’s appearances in art and popular culture.

Cover, featuring John James Audubon’s illustration from  The Birds of North America . Credit: fair use.

Cover, featuring John James Audubon’s illustration from The Birds of North America. Credit: fair use.

Fuller’s 2015 The Passenger Pigeon does all this and more, and is an extremely well-illustrated, popular review of what we know of this species. The Passenger pigeon Ectopistes migratorius is/was a long-tailed, swift-flying pigeon, famous for existing in nomadic flocks of billions by the time Europeans began colonising North America. How the birds came to be so phenomenally abundant, whether this was an ephemeral or long-lived phenomenon, and how linked this was to human-caused habitat change are good questions and there are reasons for thinking that a population of billions was not a pre-Holocene condition (e.g., Mann 2011).

Juvenile, male and female Passenger pigeon, as illustrated by Louis Agassiz Fuertes in 1910. Credit: public domain,  original here .

Juvenile, male and female Passenger pigeon, as illustrated by Louis Agassiz Fuertes in 1910. Credit: public domain, original here.

Fuller’s The Passenger Pigeon is not a gargantuan magnum opus like his The Great Auk (Fuller 1999). It’s far smaller (25 x 19 cm) and slimmer (177 pages). It includes an extraordinary number of photos, paintings and drawings, and indeed is a very attractive volume. Numerous black and white photos, mostly taken of captive birds in the early 1900s, depict the animals in life. There are photos of Martha (fabled ‘last of the passenger pigeons’) too, and reproductions of many paintings and other artworks.

The Passenger Pigeon is not an academic tome with technical citations and any extended discussion of thoughts on this bird’s evolution or biology. But it’s a good book nonetheless and I definitely recommend it for anyone interested in pigeons and/or in recently extinct birds.

The Passenger Pigeon  is not as huge and impressive as Fuller’s  The Great Auk  book, but that’s ok. Credit: fair use.

The Passenger Pigeon is not as huge and impressive as Fuller’s The Great Auk book, but that’s ok. Credit: fair use.

Aldrovandi’s Monstrous Rooster, a 16th Century Dino-Chicken

Chickens are remarkable animals, and I’ve written about them a few times at TetZoo before, albeit always too briefly (see links below). I really need to write about them at length at some point; I actually worked for a few years as a specialist chicken researcher and gathered a lot of interesting information on these birds. Anyway… here, I want to talk about one chicken in particular: a famous individual that has been mentioned several times in the recent literature (e.g., Kaiser 2007). Namely: Aldrovandi’s monstrous rooster.

Original image of Aldrovandi’s monstrous rooster, from volume 2 of his  Ornithologia . Credit: scan archived by University of Oregon ( original here ).

Original image of Aldrovandi’s monstrous rooster, from volume 2 of his Ornithologia. Credit: scan archived by University of Oregon (original here).

Ulisse Aldrovandi (1522-1605) was an Italian philosopher, physician and naturalist who’s most frequently mentioned for his three-volume Ornithologia of 1600. Therein, he wrote a lot about chickens, and part of his text covers mutants and monsters, predominantly conjoined chickens and chickens with extra limbs. My Latin is not that hot (err… Caecilius est pater), so it’s fortunate that Fernando Civardi transcribed, and Elio Corti translated, the chicken section of this work such that it’s today available to English readers. The resulting volume, published in 2009, is titled The Chicken of Ulisse Aldrovandi (Corti & Civardi 2009). It’s a great read if you like chickens.

For completeness I should note that Aldrovandi’s chicken text was actually translated beforehand (in 1963) by another worker (L. R. Lind) (Aldrovandi 1963). This version is said to be plagued with translation errors (hey, not my opinion) and hence is not preferred by specialists.

The cover of Lind’s 1963 translation of Aldrovandi’s chicken text. What’s that thing on the cover? Well… that’s a whole ‘nother story. Credit:  amazon .

The cover of Lind’s 1963 translation of Aldrovandi’s chicken text. What’s that thing on the cover? Well… that’s a whole ‘nother story. Credit: amazon.

To return to the monstrous rooster, the book includes a fine depiction of it as well as a good paragraph of description and interpretation. Aldrovandi himself observed this remarkable bird, alive, in the collection of Francesco Medici – the Grand Duke of Tuscany – and described it as so shocking in appearance that “it struck fear into brave men with its terrifying aspect”. It was blackish overall with white bases to its feathers, and its feathers are said to have looked scale-like. Given that clean-edged, metallic feathers in many gallinaceous birds can look superficially scale-like (one of the best examples being the feathering of male Green peacock Pavo muticus, sometimes called the dragonbird), this is perhaps not as surprising as it might sound.

There are a great many amazing gallinaceous birds, and here’s one of my favourites: the Green peacock. This is a captive individual at Tierpark Berlin. There’s an entire TetZoo article on this species: see links below. Credit: Markus Bühler, used with permission .

There are a great many amazing gallinaceous birds, and here’s one of my favourites: the Green peacock. This is a captive individual at Tierpark Berlin. There’s an entire TetZoo article on this species: see links below. Credit: Markus Bühler, used with permission .

The monstrous rooster did not possess a conventional fleshy comb and paired wattles but had feathers in their place: a large feathery crest projected from the top of the head and two spines – interpreted by Aldrovandi as feather quills lacking barbs – pointed upwards and outwards from the forehead, “as if they were two horns”. Tufts of long, bristle-like structures emerged from either side of the bill (close to the nostrils) and from the back of the neck as well. The legs were feathered down to the ankles and the feet appear not to have been remarkable. The bird appears to have been tall and large, based on the illustration (though no scale was provided). A colourised interpretation of the animal was produced by Corti & Civardi (2009).

Cover of Corti & Civardi (2009), showing a colourised version of Aldrovandi’s monstrous rooster. Oh to see such a bird in life. Credit: Corti & Civardi (2009).

Cover of Corti & Civardi (2009), showing a colourised version of Aldrovandi’s monstrous rooster. Oh to see such a bird in life. Credit: Corti & Civardi (2009).

Finally, the most remarkable feature was the tail. It emerged from a whitish, rounded mass of feathers, and was long, slender, fleshy and pale blue. A mass of feathers formed a tuft (Aldrovandi called it a “flock”) at the tip. This tail reminded Aldrovandi of that of “quadrupeds”, predumably meaning lizards or mammals like rats or cats. Here I would remind you that a maniraptoran with a long tail ‘should not’ – so we think based on fossils – have a tail superficially recalling that of a lizard, but instead have a resplendently feathered one. The weirdness here perhaps indicates that the embryological development of this animal’s tail was likely different from that of extinct long-tailed birds and other Mesozoic maniraptorans.

Indeed, this bird sounds so weird overall that I sometimes even wonder whether it really was a domestic chicken, and not a member of some other (presumably now extinct) gallinaceous bird. But I don’t think that this is really up there as a possibility: it really was a member of Gallus gallus.

So… wow. What are we to make of all this?

Agostino Carracci’s portrait of Ulisse Aldrovandi (1522-1605), physician, philosopher and naturalist. Credit: image in public domain, from wikipedia ( original here ).

Agostino Carracci’s portrait of Ulisse Aldrovandi (1522-1605), physician, philosopher and naturalist. Credit: image in public domain, from wikipedia (original here).

For starters, what do we know about Aldrovandi? Well, quite a lot. He was a credible, well trained individual who had studied law, philosophy, mathematics and logic at university; he published on insects and other invertebrates and was even credited by Linnaeus as the ‘father of natural history’. He also wrote extensively about anomalous cases in zoology and medicine and collected enough of them that they were (posthumously) published in the 1640 volume Historiae Serpentum et Draconum and the 1642 Monstrorum Historia. His serpents and dragons book also includes a brief discussion of the monstrous rooster, but doesn’t add information relative to that included in his Ornithologia.

Damn, chickens are awesome. These birds belonged to a group living semi-wild on Madeira. Credit: Darren Naish.

Damn, chickens are awesome. These birds belonged to a group living semi-wild on Madeira. Credit: Darren Naish.

What we can glean from Aldrovandi’s writings is that he lived within the ethnographic landscape of Renaissance Italy, by which I mean that he seemingly believed in things (like human-like monsters and mythical beasts of far-off lands) that we today know not to exist. But his writings on direct, specific cases show that he was not credulous or prone to endorsing half-truths. He was critical of stories about basilisks, for example (thought at the time to result from the production or brooding of eggs by roosters)*. Furthermore, his illustrations of known animals are often highly accurate, as you can see from the examples shared here. Indeed, his writings on other anomalous specimens – like the ‘Homuncio’ (a short-statured Indian man whose body was draped with massive fleshy growths) – have been interpreted as biologically accurate (Ruggieri & Polizzi 2003).

* For those curious, I’m not exploring the basilisk angle here; I have to avoid it for now. Constraints of time.

Aldrovandi was a skilled and accurate artist, and his illustrations of known species - familiar and foreign - are usually highly accurate, as is demonstrated by these chickens. His chicken text also includes several illustrations of curassows, and they’re all essentially accurate. Credit: Corti & Civardi (2009).

Aldrovandi was a skilled and accurate artist, and his illustrations of known species - familiar and foreign - are usually highly accurate, as is demonstrated by these chickens. His chicken text also includes several illustrations of curassows, and they’re all essentially accurate. Credit: Corti & Civardi (2009).

The major caveat here is that Aldrovandi’s text and illustration of the monstrous rooster were (so far as we can tell) produced some considerable time after his observation of the bird, in which case all sorts of discrepancies might have crept in. The possibility that it had been modified or fitted with an artificial tail is not out of the question, but can’t be tested and is just an idea I need to mention in passing. We do know of other cases whereby animals have been made to look remarkable to impress or dupe observers, after all.

But, all in all, I’m inclined to think that the case was genuine, and that a long-tailed mutant rooster really was observed at some point in the 1500s by an erudite young man.

If a ‘dino-chicken’ ever does come to pass, it should be awesome and beautiful — like a real chicken. Err, in which case I don’t think anyone will look at it and think of a connection with the Mesozoic maniraptorans it’s meant to evoke. Whatever. Credit: Rebecca Groom.

If a ‘dino-chicken’ ever does come to pass, it should be awesome and beautiful — like a real chicken. Err, in which case I don’t think anyone will look at it and think of a connection with the Mesozoic maniraptorans it’s meant to evoke. Whatever. Credit: Rebecca Groom.

I will leave you with one final thought. Jack Horner’s ‘dino-chicken’ project seeks to create a mutant fowl with a long, bony tail and other ‘ancestral’ features, all brought into existence via genetic and embryological modification. And research underpinning such efforts has already been published (Rashid et al. 2018). Was Aldrovandi’s rooster a demonstration that some of these developmental changes can occur without modern, deliberate modification? In other words, could it have been a real, ‘natural’ dino-chicken; one that existed four-hundred years before our time? If only the body, or skeleton, of this amazing bird had been preserved.

For other TetZoo articles linked to things mentioned here, see… (note: TetZoo ver 2 articles - the ScienceBlogs ones - are now appearing without their images, yay!)…

Refs - -

Aldrovandi, U. 1963. Aldrovandi on Chickens. Translated by L. R. Lind. University of Oklahoma Press, Norman, OK.

Corti, E. & Civardi, F. 2009. The Chicken of Ulisse Aldrovandi. www.summagallicana.it

Kaiser, G. 2007. The Inner Bird: Anatomy and Evolution. University of British Columbia, Vancouver.

Rashid, D. J., Surya, K., Chiappe, L. M., Carroll, N., Garrett, K. L., Varghese, B., Bailleul, A., O’Connor, J., Chapman, S. C. & Horner, J. R. 2018. Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens. Scientific Reports 8: 9014.

Ruggieri, M. & Polizzi, A. 2003. From Aldrovandi’s “Homuncio” (1592) to Buffon’s girl (1749) and the “Wart Man” of Tilesius (1793): antique illustrations of mosaicism in neurofibromatosis? Journal of Medical Genetics 40, 227-232.

New Living Animals We Want to Find

As a regular denizen of the TetZooniverse, you may well remember the July 2017 article ‘Fossils We Want to Find’ in which I discussed a list of hypothetical fossil things that we might one day discover but haven’t yet. Wouldn’t it be fun to do the same sort of thing with extant species; that is, with discoveries pertaining to living, breathing animals? Over at the Zoology for Enthusiasts facebook group (a spinoff of the Tetrapod Zoology facebook group), Jordan Fryer suggested doing exactly this, and consequently people have been coming up with their own suggested living animals that might await discovery. Because this seemed like a lot of fun (and a chance to discuss some really neat and unusual stuff), I thought I’d give it a go.

The 2017 precursor to the article you’re reading here was all about fossil animals. It included this photo, which shows me in the act of discovering a dinosaur bone in the Moroccan Sahara. Image: Richard Hing.

The 2017 precursor to the article you’re reading here was all about fossil animals. It included this photo, which shows me in the act of discovering a dinosaur bone in the Moroccan Sahara. Image: Richard Hing.

Naturally, any list of this sort is horribly subjective, reflecting the interests and biases of the person compiling the list, but so be it. It also seems all too easy to turn any compilation into a ‘list of most discoverable cryptids’: for those of you who don’t know, I have a long-standing interest in cryptozoology and have published on it quite frequently (see Naish (2017) for starters). For the most part, I’ve not done this, though read on.

Many of my thoughts on mystery animals can be found in my   2017 book  Hunting Monsters   . I am not - sorry - much impressed by the case for such supposed animals as the mokele-mbembe, an artistic reconstruction of which is shown at right. Image: David Miller, in   Mackal (1987)  .

Many of my thoughts on mystery animals can be found in my 2017 book Hunting Monsters. I am not - sorry - much impressed by the case for such supposed animals as the mokele-mbembe, an artistic reconstruction of which is shown at right. Image: David Miller, in Mackal (1987).

I’ve also mostly excluded hypothetical discoveries that are inspired by the creatures of cryptozoology but could arguably be considered independent of the cryptozoological literature. In part this is because I don’t think they’re plausible or worth considering, but it’s also because they’re cliched and the opposite of original. So, no ‘living sauropods from the Congo’ or ‘living plesiosaurs in Loch Ness’, for example.

As for what I have selected: well, some of my suggestions are sillier than others, and some are perhaps not that interesting to non-specialists. But, whatever. Feel free to dissect my suggestions in the comments, and perhaps come up with your own.

Among my suggested ‘fossils we want to find’ are protobats (like the hypothetical examples shown at left, from Graham (2002)) and a good skeleton of the giant hominid  Gigantopithecus blacki . This ilustration of a lower jaw is from Simons & Ettel's (1970) magazine article. Images: Graham (2002), Simons & Ettel (1970).

Among my suggested ‘fossils we want to find’ are protobats (like the hypothetical examples shown at left, from Graham (2002)) and a good skeleton of the giant hominid Gigantopithecus blacki. This ilustration of a lower jaw is from Simons & Ettel's (1970) magazine article. Images: Graham (2002), Simons & Ettel (1970).

A habitually bipedal, large, non-human hominid. Whatever you think of all those stories, anecdotes and sightings about bigfoot, yeti, almas, orang-pendek, yowie and so on and on, the fact remains that the discovery of a large, bipedal non-human hominid – whether it be a pongine, hominine, or member of another hominid lineage – would be a huge deal. It would not just be one of the most newsworthy creatures to ever be discovered; it would also have enormous ramifications for our understanding of hominid evolution and potentially the human condition itself.

Are crypto-hominids a cultural phenomenon more than a zoological one? I’ve argued for both possibilities at different times. Whatever… for the purposes of the article you’re reading now, I hope we can agree that the discovery of such an animal would be high on any hypothetical ‘wants’ list. Image: Darren Naish.

Are crypto-hominids a cultural phenomenon more than a zoological one? I’ve argued for both possibilities at different times. Whatever… for the purposes of the article you’re reading now, I hope we can agree that the discovery of such an animal would be high on any hypothetical ‘wants’ list. Image: Darren Naish.

It would also – if relating to North America or northern Eurasia in particular – very likely have a significant impact on economy, land management and land use in those regions… or, you’d hope it would, anyway (who knows, given the current state of environmental protection in the USA). The hypothetical discovery of such an animal would also be regarded by many as one of the biggest ‘wins’ ever scored against ‘establishment science’, and thus could well be a bad thing (viz, “if scientists were wrong about this, what else could they be wrong about?”). And I’ll stop there before we dive into a rabbit-hole of conspiracy theories and coverups.

A big, flightless passerine. The majority of living bird species – over 60% of them – are passerines, or perching birds. This is the great group that includes crows, thrushes, warblers, finches, sparrows and so many others. For all their success, wide distribution and diversity, passerines are generally quite samey. There are no big, long-legged wading passerines, or heavy-bodied diving passerines or flightless running passerines, for example. Why this is so remains mysterious: passerines didn’t take to those niches because… well, they just didn’t. Does this mean that they couldn’t? As usual, we can come up with a few reasons as to why they were ‘constrained’ in evolutionary potential, but any one of those reasons could be overturned by some evolutionary deviant that refuses to pay attention to the rules.

Passerine birds are diverse, to a degree… here’s just a sample of their diversity. This is part of a giant montage that’s being built for   my in-prep textbook The Vertebrate Fossil Record  . Image: Darren Naish.

Passerine birds are diverse, to a degree… here’s just a sample of their diversity. This is part of a giant montage that’s being built for my in-prep textbook The Vertebrate Fossil Record. Image: Darren Naish.

And thus I submit that a particularly large, wholly flightless, cursorial passerine should make itself known to the world. It should be a record-holder as goes size, but not necessarily be that much bigger than the largest known passerines (like lyrebirds and ravens): I’m talking about a bird that weighs 3-5 kg and is thus similar in size to a large chicken. It should be a big, long-legged rail-babbler, quail-thrush or similar, and hence be a denizen of Wallacea or nearby.

Eupetes , the Malaysian rail-babbler. A hypothetical big, flightless passerine should be a close relative of this bird. Image: Francesco Verronesi, CC BY-SA 2.0 ( original here ).

Eupetes, the Malaysian rail-babbler. A hypothetical big, flightless passerine should be a close relative of this bird. Image: Francesco Verronesi, CC BY-SA 2.0 (original here).

A few recently extinct, island-dwelling passerines were flightless, so we do know that passerines have the evolutionary potential to follow this pathway. Such species (a bunting and a few New Zealand wrens… and possibly a few others) were all small (less than 40 g).

A western Asian giant salamander. Giant salamanders (cryptobranchids) are restricted today to eastern Asia (where Andrias occurs) and North America (where Cryptobranchus occurs). Hunting, human disturbance, habitat loss and deterioration, climate change and other issues are putting them into perilous decline, right at the same time as we’re discovering that some of them are species complexes. They were more widespread in the past than they are today, since fossils show that Andrias salamanders were widespread across Europe and Asia between about 28 and 2 million years ago.

An Asian giant salamander ( Andrias ) photographed in captivity. Record-holding specimens of  Andrias  can be 1.8 m long and exceed 60 kg, and some extinct species reached even larger sizes. Image: Markus Bühler.

An Asian giant salamander (Andrias) photographed in captivity. Record-holding specimens of Andrias can be 1.8 m long and exceed 60 kg, and some extinct species reached even larger sizes. Image: Markus Bühler.

While there are very good reasons for the decline and extinction of the animals in the areas concerned, some of the regions where they formerly occurred still have what look like suitable habitat today and are sparsely populated by people. Furthermore, extinct giant salamanders weren’t all denizens of fast-flowing, highly oxygenated streams like those inhabited by the modern populations. Some inhabited ponds and lakes. Ergo: I would really, really like there to be a west Asian cryptobranchid that comes from a habitat considered weird for the other living members of the group. And it doesn’t have to be a giant of 2 metres or more. A hellbender-sized species of 70 cm or so will do fine thank you very much.

Some extinct cryptobranchids - this is Zdeněk Burian’s reconstruction of  Andrias scheuchzeri  - inhabited European ponds and lakes. I’ve previously criticised this image for showing the animal as terrestrial. Since then, the proposal has been made that some extinct cryptobranchids (albeit not  A. scheuchzeri ) were significantly more terrestrial than living species. Image: (c) Zdeněk Burian.

Some extinct cryptobranchids - this is Zdeněk Burian’s reconstruction of Andrias scheuchzeri - inhabited European ponds and lakes. I’ve previously criticised this image for showing the animal as terrestrial. Since then, the proposal has been made that some extinct cryptobranchids (albeit not A. scheuchzeri) were significantly more terrestrial than living species. Image: (c) Zdeněk Burian.

Again, this is an area of special interest to cryptozoologists, since there have been occasional suggestions that stories, engravings and such from western Asia might reflect folk knowledge of unusually big salamanders in the region. In reality, the images and stories concerned are super-ambiguous and more likely refer to otters and god knows what else.

At left:  Andrias  skull. Image: Darren Naish. At right: Japanese giant salamander ( A. japonicus ) illustration by Y. de Hoev from 1887. Image: Y. de Hoev, public domain ( original here ).

At left: Andrias skull. Image: Darren Naish. At right: Japanese giant salamander (A. japonicus) illustration by Y. de Hoev from 1887. Image: Y. de Hoev, public domain (original here).

A living albanerpetontid. Everyone knows that there are three main groups of living amphibian: caecilians, salamanders and anurans (frogs and toads). But until (geologically) recently, there was a fourth group: the albanerpetontids, sometimes termed albies by those who work on them. Albanerpetontids were geographically widespread, their range including Eurasia, northern Africa and North America, and they were geologically long-lived too. The oldest are from the Middle Jurassic while the youngest are… well, we’ve known of Miocene fossil albanerpetontids for decades, have known of Pliocene specimens since 2005 (Venczel & Gardner 2005), and now know that at least one species persisted into the Pleistocene (Villa et al. 2018). The fact that their fossil record has been creeping towards the Recent means that the possibility of fossil and even extant Holocene specimens being discovered isn’t ridiculous, especially given the small size of these animals and hence tiny size of their bones.

New salamander species are occasionally discovered in Europe and Asia even now. It would be amazing if an animal suspected to be a ‘new salamander’ one day turned out to be a living albanerpetontid. These reconstructions were published by McGowan & Evans (1995). They might have erred in implying that the scales would be externally visible as shown here; more likely is that they were concealed by epidermis, as in other scaly fossil amphibians. Image: McGowan & Evans (1995).

New salamander species are occasionally discovered in Europe and Asia even now. It would be amazing if an animal suspected to be a ‘new salamander’ one day turned out to be a living albanerpetontid. These reconstructions were published by McGowan & Evans (1995). They might have erred in implying that the scales would be externally visible as shown here; more likely is that they were concealed by epidermis, as in other scaly fossil amphibians. Image: McGowan & Evans (1995).

To be frank, a live albanerpetontid wouldn’t be a particularly spectacular animal: it would be a tiny, slim, salamander-like amphibian less than 10 cm long, and it wouldn’t be much fun to watch since it would spend most of its time hiding and burrowing in leaf litter. But among herp-nerds it would be a huge deal. Live albanerpetontids were scaly-skinned (though the scales were not necessarily visible externally), with eyelids, and with adaptations in the snout, skull-roof, neck and body shape linked to head-first burrowing (McGowan & Evans 1995).

An artistic reconstruction of a live albanerpetontid…   produced for my in-prep The Vertebrate Fossil Record  . Image: Darren Naish.

An artistic reconstruction of a live albanerpetontid… produced for my in-prep The Vertebrate Fossil Record. Image: Darren Naish.

A Eurasian palaeognath. Palaeognaths are the big, flightless ratites (ostriches, emus and so on), the superficially gamebird-like, flight-capable tinamous, and their extinct relatives. A huge amount has been written about the evolutionary history and biogeography of these birds, since their distribution is curious and has resulted in all kinds of different models about how they might have spread around the world. I’ve written about this issue at length on previous occasion (the articles concerned being famous for generating the longest-ever comment threads in the history of TetZoo… though all of this is mostly wasted now, what with SciAm’s paywalling of the site, sigh). Living palaeognaths are absent from Eurasia, despite the former present in the region of ancient, flight-capable Paleogene taxa, extinct ostriches and others.

As this map shows, modern palaeognaths occurred everywhere until recently (except Antarctica) with the exception of northern North America and the cooler parts of Eurasia. Extinctions across Eurasia, Madagascar and New Zealand of course saw the disappearance of various members of the group. Image: Darren Naish.

As this map shows, modern palaeognaths occurred everywhere until recently (except Antarctica) with the exception of northern North America and the cooler parts of Eurasia. Extinctions across Eurasia, Madagascar and New Zealand of course saw the disappearance of various members of the group. Image: Darren Naish.

The fact that Paleogene Europe was home to many bird groups that no longer occur there but are now denizens of tropical regions elsewhere leads me to hope for a living palaeognath – a tinamou- or bustard-sized species – that descends directly from archaic Paleogene taxa and now lives in the Asian tropics. It should be a cryptic generalist with barred plumage and a mid-length bill and a reduced flight ability.

A gigantic, predatory, limbed amphisbaenian. Regular readers of TetZoo might know that I really like amphisbaenians: the mostly limbless, bullet-headed ‘worm lizards’ of the American tropics, Africa, and parts of southern Europe and western Asia. Amphisbaenian evolutionary history and biogeography has become increasingly complex in recent years as we’ve learnt a bunch of new stuff about their fossil history, genetics and anatomy. Among the weirdest of amphisbaenians are the ajolotes (or bipedids), the only extant group to possess limbs. These limbs are not small stumps or flaps (as they are in some other near-limbless, serpentine squamates) but well-developed, clawed forelimbs. According to some phylogenetic models, ajolotes are not the sister-group to limbless amphisbaenians but deeply nested within the limbless clade (Conrad 2008, Videl et al. 2008), in which case their limbedness – if you will – perhaps evolved from limbless ancestors. Add to this the fact that some amphisbaenians are robust-jawed, short-faced predators of vertebrates that ambush prey from beneath the surface and bite chunks from the bodies of surface-dwelling mammals and reptiles.

Bipes , an ajolote of Mexico (they might occur in parts of the USA as well). Three extant species are recognised. Image: Darren Naish.

Bipes, an ajolote of Mexico (they might occur in parts of the USA as well). Three extant species are recognised. Image: Darren Naish.

So then… where oh where are the giant, limbed, robust-skulled, vertebrate-eating amphisbaenians? By ‘giant’, I am not talking about a graboid-sized monster of several metres (though that would be nice), but a more reasonable animal of a mere 1.5 metres or so. Easily the stuff of nightmares. They could inhabit warm regions of any continent.

Carl Gans’s illustration of a burrowing ajolote, showing how the large, well-clawed forelimbs function in propulsion. This is clearly a Five-toed worm lizard  Bipes biporus ; the other extant species have four and three digits, respectively. Image:   Gans (1974)  .

Carl Gans’s illustration of a burrowing ajolote, showing how the large, well-clawed forelimbs function in propulsion. This is clearly a Five-toed worm lizard Bipes biporus; the other extant species have four and three digits, respectively. Image: Gans (1974).

Is there any reason to think that gigantic, predatory, limbed amphisbaenians might actually exist and await discovery? Nope. But I wish it were so. Regular readers might recognise that such creatures are denizens of the alternative-timeline Earth of the Squamozoic, but I’m sure that that’s coincidental.

What would a gigantic, predatory, limbed amphisbaenian look like? Like this, of course. Image: Darren Naish.

What would a gigantic, predatory, limbed amphisbaenian look like? Like this, of course. Image: Darren Naish.

An African or west Eurasian, long-beaked river dolphin. On several occasions within the history of odontocete cetaceans (‘toothed whales’), lineages have moved into brackish and estuarine environments, and eventually made the transition to committed freshwater life. There are the Asian Platanista species, the recently extinct Lipotes of China, and the tropical American Inia species. Once united within Platanistoidea and thought to be close kin, we know today that these animals represent at least three separate transitions to the freshwater environment (the term Platanistoidea is now restricted to the Platanista lineage alone). In addition, members of other groups – I’m thinking of the delphinid Orcaella – occur in rivers within parts of their range. There’s also a fossil beaked whale that might be indicative of freshwater specialisation in yet another odontocete group (Mead 1975).

River dolphins are pretty special looking. This is a Ganges river dolphin ( Platanista gangetica ). Image: Zahangir Alom / Marine Mammal Commission / National Oceanic and Atmospheric Administration, public domain ( original here ).

River dolphins are pretty special looking. This is a Ganges river dolphin (Platanista gangetica). Image: Zahangir Alom / Marine Mammal Commission / National Oceanic and Atmospheric Administration, public domain (original here).

In view of all this, why aren’t there river-dwelling dolphins in Africa, Europe or western Asia? Again, the answer seems to be… there just aren’t. A few fossil taxa suggest that such animals might have evolved if things had gone another way (there are fossil platanistoids from the Caucasus, for example). But I humbly submit that the great river systems of tropical Africa, the Tigris-Euphrates system of western Asia and the Danube, Po, Ebro, Dniester and others of southern Europe would be much improved if only we knew of their endemic riverine dolphins. I’m talking about a true riverine specialist, convergent with Inia and Platanista, with a long beak, spike-like teeth, reduced eyesight, the works. And if you want to play fast and loose with antiquarian literature and anecdote, there are references in the literature to ‘river dolphins’ in the Nile and there are even one or two eyewitness accounts from central Europe that describe long-beaked ‘dolphins’ seen in rivers and lakes.

If there are extant west Eurasian or African river dolphins, they should look like this. This is a hypothetical species, modelled on the American  Inia  and Asian  Platanista . Image: Darren Naish.

If there are extant west Eurasian or African river dolphins, they should look like this. This is a hypothetical species, modelled on the American Inia and Asian Platanista. Image: Darren Naish.

An endoparasitic tetrapod. Tetrapods have become parasites on several occasions. Vampire bats are parasites of birds and mammals, and it’s even been argued that some blood- and milk-eating human populations can be considered parasites of the mammals they rely on (though the mammals concerned are domesticated, so it’s complicated). Elsewhere among vertebrates, everyone knows about the parasitic catfishes that invade the gills of other actinopterygian fishes and even the urethras of mammals; less familiar is the fact that other actinopterygians can, on rare occasion, become trapped inside the bodies of other vertebrates and then make a successful living. Yes, you read that right. I have in mind the case where two Snubnosed or Pugnose eels Simenchelys parasitica were discovered living inside the heart of a mako shark (Caira et al. 1997; see also Eagderi et al. 2016). This eel is not – despite its name* – ordinarily an internal parasite: this was a case of facultative endoparasitism!

At left: a snubnosed eel found living inside the heart of a shark. Eels are not tetrapods, it’s true. But here’s evidence that aquatic vertebrates can become endoparasites. Image: Caira  et al . (1997). At right: an aquatic typhlonectid caecilian. Surely it’s only a matter of time before we discover an endoparasitic one of those as well. Image: Neil Phillips.

At left: a snubnosed eel found living inside the heart of a shark. Eels are not tetrapods, it’s true. But here’s evidence that aquatic vertebrates can become endoparasites. Image: Caira et al. (1997). At right: an aquatic typhlonectid caecilian. Surely it’s only a matter of time before we discover an endoparasitic one of those as well. Image: Neil Phillips.

There are all kinds of reasons why a tetrapod couldn’t become an endoparasite, respiration being high on the list. A hypothetical endoparasitic tetrapod would have to be small, with remarkable tolerance of unusual chemical and thermal conditions, with low oxygen requirements, and most likely with the ability to respire cutaneously or via gills. In other words, it should be the world’s weirdest caecilian. As if caecilians aren’t weird enough, I’d love there to be small, endoparasitic caecilians. Given that some caecilians are already aquatic gill-breathers that will consume the tissues of fish (exhibit A: the sequence from River Monsters where Jeremy Wade discovers swarming typhlonectid caecilians in the carcass of a large fish), I predict these animals to be aquatic, South American species that parasitise actinopterygians and aquatic mammals, like Inia the river dolphin.

* Snubnosed eels were given the name ‘parasitica’ because they opportunistically latch on to the bodies of larger fish and eat away at the flesh. They were not thought to ever be proper internal parasites prior to 1992.

And that’s where I’ll stop for now. I actually came up with a list containing numerous additional ‘wish list’ animals but time is against me. Maybe I’ll cover them in another article. Whatever, this was all a bit of fun and I hope you enjoyed it.

For TetZoo articles relevant to the issues covered here, see…

PS I’m going to stop linking to the SciAm run of TetZoo articles soon, because I cannot access them at all and they’re now all but useless. They all need to be relocated to an open-access site.

Thanks to those supporting this work – and the very blog itself – via pledges at patreon. You can support what I do and see works-in-prep behind the scenes, via pledges as small as $1 per month.

Refs - -

Caira, J. N., Benz, G. W., Borucinska, J. & Kohler, N. E. 1997. Pugnose eels, Simenchelys parasiticus (Synaphobranchidae) from the heart of a shortfin mako, Isurus oxyrinchus (Lamnidae). Environmental Biology of Fishes 49, 139-144.

Conrad, J. 2008. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History 310, 1-182.

Eagderi, S., Christiaens, J., Boone, M., Jacobs, P. & Adriaens, D. 2016 Functional morphology of the feeding apparatus in Simenchelys parasitica (Simenchelyinae: Synaphobranchidae), an alleged parasitic eel. Copeia 104, 421-439.

Gans, C. 1974. Biomechanics: An Approach to Vertebrate Biology. J. B. Lippincott Company, Philadelphia, Toronto.

Graham, G. L. 2002. Bats of the World. St. Martin’s Press, New York.

Mackal, R. P. 1987. A Living Dinosaur? In Search of Mokele-Mbembe. E. J. Brill, Leiden.

McGowan, G. J. & Evans, S. E. 1995. Albanerpetontid amphibians from the Cretaceous of Spain. Nature 373, 143-145.

Mead, J. G. 1975. A fossil beaked whale (Cetacea: Ziphiidae) from the Miocene of Kenya. Journal of Paleontology 49, 745-751.

Naish, D. 2017. Hunting Monsters: Cryptozoology and the Reality Behind the Myths. Arcturus, London.

Simons, E. L. & Ettel, P. C. 1970. GigantopithecusScientific American 222 (1), 77-84.

Venczel, M. & Gardner, J. D. 2005. The geologically youngest albanerpetontid amphibian, from the Lower Pliocene of Hungary. Palaeontology 48, 1273-1300.

Vidal, N., Azvolinsky, A., Cruaud, C. & Hedges, S. B. 2008. Origin of tropical American burrowing reptiles by transatlantic rafting. Biology Letters 4, 115-118.

Villa, A., Blain, H.-A. & Delfino, M. 2018. The Early Pleistocene herpetofauna of Rivoli Veronese (Northern Italy) as evidence for humid and forested glacial phases in the Gelasian of Southern Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 490, 393-403.

Avocets in Flight and Phylogeny

Avocets are a small group of long-legged, long-billed wading birds, all four species of which are boldly patterned in black and white. The American avocet Recurvirostra americana and Red-necked avocet R. novaehollandiae also have a reddish or brown head and neck. All avocets are included in the single genus Recurvirostra. Avocets are present on all continents except Antarctica, are absent from cold northern parts of Eurasia and North America, and are associated with habitats ranging from estuaries, lagoons, sewage ponds and salt-pans to ponds and rivers.

Pied avocets (and Black-tailed godwits) in flight. Image: Bernie Dempsey.

Pied avocets (and Black-tailed godwits) in flight. Image: Bernie Dempsey.

I don’t think I’ve ever written about avocets before. The article here came about because I received permission to use the photos you see here from my long-standing friend Bernie Dempsey. Avocets mostly nest in colonies, though solitary nesting is practised as well; they also tend to be gregarious outside the breeding season. The photos here show large numbers of Pied avocet R. avosetta taking flight at Brownsea, southern England, due to the presence of a hunting peregrine. Black-tailed godwits Limosa limosa (and a single gull) are visible in flight as well. Having mentioned breeding, avocets are famous for performing elaborate social breeding ceremonies where groups form circles, raise and lower their bills in ritualised fashion, and often engage in fights and scuffles.

Another shot of the same group of Pied avocets (and Black-tailed godwits) in flight. Image: Bernie Dempsey.

Another shot of the same group of Pied avocets (and Black-tailed godwits) in flight. Image: Bernie Dempsey.

The fine, upcurved avocet bill is used in ‘skimming’ or ‘scything’ across the surface of water. The birds do this while wading, typically in water only as deep as their ankles. Small food items (mostly molluscs, crustaceans and aquatic insects) are retained on internal lamellae, and the large, fleshy tongue is (presumably) used to remove said items once enough have been collected. The bill is apparently more strongly curved in females than in males: another example of bill dimorphism of the sort I’ve written about before (see this ver 2 article) and perhaps present as a consequence of resource partitioning. As always with animals, avocets are not limited to this form of foraging alone, however: they will also swim and up-end to reach food from a submerged muddy substrate and will also grab insects from terrestrial plants.

A Pied avocet, photographed at Minsmere, UK. Note the highly reduced hallux. Image: Tim Felce, CC BY-SA 2.0 ( original here ).

A Pied avocet, photographed at Minsmere, UK. Note the highly reduced hallux. Image: Tim Felce, CC BY-SA 2.0 (original here).

Avocets might best be regarded as weird plovers. Avocets are closely related to a similar group of long-legged waders: the stilts Cladorhynchus and Himantopus. Stilts are very avocet-like but differ in having a straight bill. Anyone familiar with bird taxonomy will know that bird groups that look as different from one another as avocets and stilts do normally get given their own ‘families’, but the tradition here is that both are combined within Recurvirostridae, avocets being Recurvirostrinae and stilts being Himantopodinae. However, not only does a ‘subfamily-level’ classification seem somewhat pointless given that we’re only talking about three genera, it is by no means clear that stilts are monophyletic, since some studies find Cladorhynchus (the banded stilt) to be outside a Himantopus + Recurvirostra clade (Christidis & Schodde 1992, Dove 2000).

Having mentioned Cladorhynchus within the context of phylogeny, I have to note that this bird was used by Olson & Feduccia (1980) to support their idea that flamingos “evolved directly from the Recurvirostridae”. This view (which was never that popular among palaeornithologists anyway) now has to be considered compellingly falsified. I might write about this whole story some other time.

A selection of birds included within the charadriiform group Charadrii, chosen to represent most (though not all) main lineages. This is a montage produced for   in-prep textbook  The Vertebrate Fossil Record   . Image: Darren Naish.

A selection of birds included within the charadriiform group Charadrii, chosen to represent most (though not all) main lineages. This is a montage produced for in-prep textbook The Vertebrate Fossil Record. Image: Darren Naish.

As goes the larger view, recurvirostrids are charadriiforms (that is, part of the same group as plovers, gulls and auks), and specifically part of Charadrii, the charadriiform group that contains sheathbills, stone-curlews or thick-knees, ibisbills, oystercatchers and plovers. While conventionally considered a distinct ‘family’, note that Recurvirostridae is one of several long-billed groups within Charadrii that’s surrounded in phylogenies by taxa traditionally grouped together within the plover family Charadriidae (Chu 1995, Ericson et al. 2003, Baker et al. 2007, Mayr 2011). No one has acted on this yet, even though the most ‘sensible’ solution is to sink Recurvirostridae and the other affected groups (Ibidorhynchidae and Haematopodidae) into Charadriidae. The alternative solution is to raise several lineages to ‘family' level’ such that oystercatchers, recurvirostrids and so on get to retain ‘family status’. Whatever, the interesting thing here are goes charadriiform evolution is that the very long-billed recurvirostrids, oystercatchers and ibisbills all evolved from short-billed ancestors (or a single ancestor?) that would have been similar to plovers, stone-curlews or sheathbills. Maybe we’d guess this already, but it receives firm support from the topology of cladograms. I’ve written a fair bit about this issue (about the topology and taxonomy of these groups) in my in-prep textbook, and the cladogram you see here is from that work (you can see more from the book and my other projects here at patreon).

There are several competing cladograms for Charadrii: this one is a simplified version of the topology recovered by Mayr (2011). Like all of these sorts of cladograms, this one was produced for my in-prep textbook…   on which go here  .  Pluvianus  is missing simply because I haven’t drawn it yet. Image: Darren Naish.

There are several competing cladograms for Charadrii: this one is a simplified version of the topology recovered by Mayr (2011). Like all of these sorts of cladograms, this one was produced for my in-prep textbook… on which go here. Pluvianus is missing simply because I haven’t drawn it yet. Image: Darren Naish.

The restoration of Pied avocets in Britain. Here in the UK, Pied avocets (which we typically term just ‘avocets’) are famous for virtually disappearing from the country due to wetland reclamation followed by egg collecting and shooting. They were gone as a breeding species for about 100 years. During the 1940s, the birds began breeding again due to the modification of Minsmere in Suffolk to its original flooded condition (this flooding being a WWII defensive measure). Competition and predation from gulls initially kept breeding success low but removal of gull nests and eggs eventually allowed avocet breeding success to increase; another drop during the 1970s – this time caused by a decline in invertebrate prey – was countered by waterway management (Thomas 1985).

The modern RSPB logo. Image: fair use.

The modern RSPB logo. Image: fair use.

This determined conservation effort was a great success and a good example of how systems (which were already heavily modified by human action) have to be managed and manipulated extensively for an endangered species to be bought back from the brink. It explains why the Pied avocet was adopted in 1955 as the symbol for the RSPB (Royal Society for the Protection of Birds). This is apparently the first use of a bird image as a symbol for conservation.

Pied avocets and Black-tailed godwits (and a gull), alarmed by a nearby peregrine. Image: Bernie Dempsey.

Pied avocets and Black-tailed godwits (and a gull), alarmed by a nearby peregrine. Image: Bernie Dempsey.

Charadriiform birds have been covered a few times at TetZoo before (wow… I really thought I’d written about waders - that is, scolopacids - a great deal more than this). My issue with providing lists of links like this is that many of these articles are now paywalled. Support me at patreon and assist my efforts in getting them transferred to ver 4 (where paywalling will never occur)…

Refs - -

Baker, A. J., Pereira, S. L. & Paton, T. A. 2007. Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biology Letters 3, 205-209.

Christia, P. D., Christidis, L. & Schodde, R. 1992. Biochemical systematics of the Charadriiformes (shorebirds): relationships between the Charadrii, Scolopaci and Lari. Australian Journal of Zoology 40, 291-302.

Chu, P. C. 1995. Phylogenetic reanalysis of Strauch’s osteological data set for the Charadriiformes. The Condor 97, 174-196.

Dove, C. J. 2000. A descriptive and phylogenetic analysis of plumalaceous feather characters in Charadriiformes. Ornithological Monographs 51, 1-163.

Ericson, P. G. P., Envall, I., Irestadt, M. & Norman, J. A. 2003. Inter-familial relationships of the shorebirds (Aves: Charadriiformes) based on nuclear DNA sequence data. BMC Evolutionary Biology 3: 16.

Mayr, G. 2011. The phylogeny of charadriiform birds (shorebirds and allies) – reassessing the conflict between morphology and molecules. Zoological Journal of the Linnean Society 161, 916-934.

Olson, S. L. & Feduccia, A. 1980. Relationships and evolution of flamingos (Aves: Phoenicopteridae). Smithsonian Contributions to Zoology 316, 1-73.

Thomas, G. 1985. Plovers and sandpipers. In Perrins, C. M. & Middleton, A. L. A. (eds) The Encyclopedia of Birds. Equinox, Oxford, pp. 162-175.